Efficient Robust Digital Annulus Fitting with Bounded Error

  • Minh Son Phan
  • Yukiko Kenmochi
  • Akihiro Sugimoto
  • Hugues Talbot
  • Eric Andres
  • Rita Zrour
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

A digital annulus is defined as a set of grid points lying between two circles sharing an identical center and separated by a given width. This paper deals with the problem of fitting a digital annulus to a given set of points in a 2D bounded grid. More precisely, we tackle the problem of finding a digital annulus that contains the largest number of inliers. As the current best algorithm for exact optimal fitting has a computational complexity in O(N3 logN) where N is the number of grid points, we present an approximation method featuring linear time complexity and bounded error in annulus width, by extending the approximation method previously proposed for digital hyperplane fitting. Experiments show some results and runtime in practice.

Keywords

fitting annulus approximation halfspace range searching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press (2004)Google Scholar
  2. 2.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press (2007)Google Scholar
  3. 3.
    Rousseeuw, P.J.: Least median of squares regression. Journal of the American Statistical Association 79(388), 871–880 (1984)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zrour, R., Kenmochi, Y., Talbot, H., Buzer, L., Hamam, Y., Shimizu, I., Sugimoto, A.: Optimal consensus set for digital line and plane fitting. International Journal of Imaging Systems and Technology 21, 45–47 (2011)CrossRefGoogle Scholar
  6. 6.
    Aiger, D., Kenmochi, Y., Talbot, H., Buzer, L.: Efficient Robust Digital Hyperplane Fitting with Bounded Error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 223–234. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Andres, E., Jacob, M.-A.: The Discrete Analytical Hyperspheres. IEEE TVCG 3(1), 75–86 (1997)Google Scholar
  8. 8.
    Largeteau-Skapin, G., Zrour, R., Andres, E.: O(n 3 logn) Time Complexity for the Optimal Consensus Set Computation for 4-Connected Digital Circles. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 241–252. Springer, Heidelberg (2013)Google Scholar
  9. 9.
    da Fonseca, G.D., Mount, D.M.: Approximate range searching: The absolute model. Comput. Geom. 43, 434–444 (2010)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    O’Rourke, J., Kosaraju, S.R., Megiddo, N.: Computing circular separability. Discrete and Computational Geometry 1(1), 105–113 (1986)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Andres, E., Acharya, R., Sibata, C.: Discrete Analytical Hyperplanes. GMIP 59(5), 302–309 (1997)Google Scholar
  12. 12.
    Provot, L., Gérard, Y.: Estimation of the Derivatives of a Digital Function with a Convergent Bounded Error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 284–295. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Fiorio, C., Toutant, J.-L.: Arithmetic Discrete Hyperspheres and Separatingness. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 425–436. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Costa, L.F.D., Cesar, R.M.: Shape analysis and classification: Theory and practice, 1st edition. CRC Press (2000)Google Scholar
  15. 15.
    Ding, D., Ping, X., Hu, M., Wang, D.: Range image segmentation based on randomized Hough transform. Pattern Recognition Letters 26(13), 2033–2041 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Minh Son Phan
    • 1
    • 2
  • Yukiko Kenmochi
    • 1
  • Akihiro Sugimoto
    • 3
  • Hugues Talbot
    • 1
  • Eric Andres
    • 4
  • Rita Zrour
    • 4
  1. 1.LIGM, UPEMLV-ESIEE-CNRSUniversité Paris-EstFrance
  2. 2.LSIITUniversité de StrasbourgFrance
  3. 3.National Institute of InformaticsJapan
  4. 4.Laboratory XLIM, SIC DepartmentUniversity of PoitiersFrance

Personalised recommendations