Critical Connectedness of Thin Arithmetical Discrete Planes

  • Valérie Berthé
  • Damien Jamet
  • Timo Jolivet
  • Xavier Provençal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

The critical thickness of an arithmetical discrete plane refers to the infimum thickness that preserves its 2-connectedness. This infimum thickness can be computed thanks to a multidimensional continued fraction algorithm, namely the fully subtractive algorithm. We provide a characterization of the discrete planes with critical thickness that contain the origin and that are 2-connected.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 65(1-3), 92–111 (2003)MATHCrossRefGoogle Scholar
  2. 2.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. CVGIP: Graphical Model and Image Processing 59(5), 302–309 (1997)CrossRefGoogle Scholar
  3. 3.
    Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8(2), 181–207 (2001)MathSciNetMATHGoogle Scholar
  4. 4.
    Berthé, V., Domenjoud, E., Jamet, D., Provençal, X., Toutant, J.L.: Oral Communication in Numeration and Substitution 2012, June 4-8, Kyoto (2012)Google Scholar
  5. 5.
    Berthé, V., Jolivet, T., Siegel, A.: Substitutive Arnoux-rauzy sequences have pure discrete spectrum. Unif. Distrib. Theory 7(1), 173–197 (2012)MathSciNetGoogle Scholar
  6. 6.
    Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput. Sci. 319(1-3), 203–227 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Domenjoud, E., Jamet, D., Toutant, J.L.: On the Connecting Thickness of Arithmetical Discrete Planes. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 362–372. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Fernique, T.: Bidimensional Sturmian Sequences and Substitutions. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 236–247. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Jamet, D., Toutant, J.L.: On the Connectedness of Rational Arithmetic Discrete Hyperplanes. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 223–234. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Jamet, D., Toutant, J.L.: Minimal arithmetic thickness connecting discrete planes. Discrete Applied Mathematics 157(3), 500–509 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Meester, R.W.J.: An algorithm for calculating critical probabilities and percolation functions in percolation models defined by rotations. Ergodic Theory Dynam. Systems 9(3), 495–509 (1989)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Meester, R.W.J., Nowicki, T.: Infinite clusters and critical values in two-dimensional circle percolation. Israel J. Math. 68(1), 63–81 (1989)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’état, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  14. 14.
    Schweiger, F.: Multidimensional continued fractions. Oxford Science Publications. Oxford University Press, Oxford (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valérie Berthé
    • 1
  • Damien Jamet
    • 2
  • Timo Jolivet
    • 1
    • 3
  • Xavier Provençal
    • 4
  1. 1.LIAFA CNRSUniversité Paris DiderotFrance
  2. 2.LORIAUniversité de LorraineFrance
  3. 3.FUNDIM, Department of MathematicsUniversity of TurkuFinland
  4. 4.LAMAUniversité de SavoieFrance

Personalised recommendations