A Multivariate Analysis of Some DFA Problems

  • Henning Fernau
  • Pinar Heggernes
  • Yngve Villanger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7810)

Abstract

We initiate a multivariate analysis of two well-known NPhard decision problems on DFAs: the problem of finding a short synchronizing word and that of finding a DFA on few states consistent with a given sample of the intended language and its complement. For both problems, we study natural parameterizations and classify them with the tools provided by Parameterized Complexity. Somewhat surprisingly, in both cases, rather simple FPT algorithms can be shown to be optimal, mostly assuming the (Strong) Exponential Time Hypothesis.

Keywords

Deterministic finite automata NP-hard decision problems synchronizing word consistency problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Transactions on Algorithms 2(2), 153–177 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Angluin, D.: On the complexity of minimum inference of regular sets. Information and Control (now Information and Computation) 39, 337–350 (1978)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arvind, V., Köbler, J., Lindner, W.: Parameterized learnability of juntas. Theoretical Computer Science 410(47-49), 4928–4936 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Berlinkov, M.V.: Approximating the Minimum Length of Synchronizing Words Is Hard. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 37–47. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Björklund, H., Martens, W.: The tractability frontier for NFA minimization. Journal of Computer and System Sciences 78(1), 198–210 (2012)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Calabro, C., Impagliazzo, R., Paturi, R.: The Complexity of Satisfiability of Small Depth Circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 75–85. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny Časopis 14(3), 208–216 (1964)MATHGoogle Scholar
  8. 8.
    Chen, J., Zhang, F.: On product covering in 3-tier supply chain models: Natural complete problems for W[3] and W[4]. Theoretical Computer Science 363(3), 278–288 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Costa Florêncio, C., Fernau, H.: On families of categorial grammars of bounded value, their learnability and related complexity questions. Theoretical Computer Science 452, 21–38 (2012)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Costa Florêncio, C., Verwer, S.: Regular Inference as Vertex Coloring. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS (LNAI), vol. 7568, pp. 81–95. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Dejean, F., Schützenberger, M.P.: On a question of Eggan. Information and Control (now Information and Computation) 9(1), 23–25 (1966)MATHCrossRefGoogle Scholar
  12. 12.
    Demaine, E.D., Eisenstat, S., Shallit, J., Wilson, D.A.: Remarks on Separating Words. In: Holzer, M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 147–157. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Downey, R.G., Evans, P.A., Fellows, M.R.: Parameterized learning complexity. In: Proc. Sixth Annual ACM Conference on Computational Learning Theory, COLT, pp. 51–57. ACM Press (1993)Google Scholar
  14. 14.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  15. 15.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal on Computing 19(3), 500–510 (1990)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Fellows, M.: Towards Fully Multivariate Algorithmics: Some New Results and Directions in Parameter Ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Fellows, M.R., Fernau, H.: Facility location problems: A parameterized view. Discrete Applied Mathematics 159, 1118–1130 (2011)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the number of numbers. Theory of Computing Systems 50(4), 675–693 (2012)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Dwork, C. (ed.) ACM Symposium on Theory of Computing, STOC, pp. 133–142. ACM (2008)Google Scholar
  20. 20.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979)MATHGoogle Scholar
  21. 21.
    Gold, E.M.: Language identification in the limit. Information and Control (now Information and Computation) 10, 447–474 (1967)MATHCrossRefGoogle Scholar
  22. 22.
    Gold, E.M.: Complexity of automaton identification from given data. Information and Control (now Information and Computation) 37, 302–320 (1978)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    de la Higuera, C.: Grammatical inference. Learning automata and grammars. Cambridge University Press (2010)Google Scholar
  24. 24.
    Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Information and Computation 209(3), 456–470 (2011)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill (1970)Google Scholar
  27. 27.
    Lee, D., Yannakakis, M.: Testing finite state machines: State identification and verification. IEEE Transactions on Computers 43, 306–320 (1994)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approximated within any polynomial. Journal of the ACM 40, 95–142 (1993)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Sandberg, S.: Homing and Synchronizing Sequences. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Stephan, F., Yoshinaka, R., Zeugmann, T.: On the parameterised complexity of learning patterns. In: Gelenbe, E., Lent, R., Sakellari, G. (eds.) Computer and Information Sciences II - 26th International Symposium on Computer and Information Sciences, ISCIS, pp. 277–281. Springer (2011)Google Scholar
  31. 31.
    Trahtman, A.N.: Modifying the Upper Bound on the Length of Minimal Synchronizing Word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Volkov, M.V.: Synchronizing Automata and the Černý Conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Walker, P.J.: Synchronizing Automata and a Conjecture of Černý. Ph.D. thesis, University of Manchester, UK (2008)Google Scholar
  34. 34.
    Wareham, H.T.: The Parameterized Complexity of Intersection and Composition Operations on Sets of Finite-State Automata. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Henning Fernau
    • 1
  • Pinar Heggernes
    • 2
  • Yngve Villanger
    • 2
  1. 1.Department of InformaticsUniversity of TrierGermany
  2. 2.Department of InformaticsUniversity of BergenNorway

Personalised recommendations