Advertisement

Mix-Automatic Sequences

  • Jörg Endrullis
  • Clemens Grabmayer
  • Dimitri Hendriks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7810)

Abstract

Mix-automatic sequences form a proper extension of the class of automatic sequences, and arise from a generalization of finite state automata where the input alphabet is state-dependent. In this paper we compare the class of mix-automatic sequences with the class of morphic sequences. For every polynomial ϕ we construct a mix-automatic sequence whose subword complexity exceeds ϕ. This stands in contrast to automatic and morphic sequences which are known to have at most quadratic subword complexity. We then adapt the notion of k-kernels to obtain a characterization of mix-automatic sequences, and employ this notion to construct morphic sequences that are not mix-automatic.

Keywords

Automatic Sequence Numeration System Finite State Automaton Number Format Input Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, New York (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Berstel, J.: Transductions and Context-Free Languages. Teubner (1979)Google Scholar
  3. 3.
    Cobham, A.: On the Base-Dependence of Sets of Numbers Recognizable by Finite Automata. Mathematical Systems Theory 3(2), 186–192 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cobham, A.: Uniform Tag Sequences. Theory of Computing Systems 6, 164–192 (1972)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword Complexity of Various Classes of Deterministic Languages without Interaction. Theoretical Computer Science 1, 59–75 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Grabmayer, C., Endrullis, J., Hendriks, D., Klop, J.W., Moss, L.S.: Automatic Sequences and Zip-Specifications. In: Proc. Symp. on Logic in Computer Science (LICS 2012), pp. 335–344. IEEE Computer Society (2012)Google Scholar
  7. 7.
    Grabmayer, C., Endrullis, J., Hendriks, D., Klop, J.W., Moss, L.S.: Automatic Sequences and Zip-Specifications. Tech. Rep. 1201.3251, arXiv (2012), http://arxiv.org/abs/1201.3251v1
  8. 8.
    Knuth, D.E.: The Art of Computer Programming, vol. II: Seminumerical Algorithms, 2nd edn. Addison-Wesley (1981)Google Scholar
  9. 9.
    Morse, M., Hedlund, G.A.: Symbolic Dynamics. American Journal of Mathematics 60, 815–866 (1938)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rigo, M.: Generalization of Automatic Sequences for Numeration Systems on a Regular Language. Theoretical Computer Science 244(1-2), 271–281 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Rigo, M., Maes, A.: More on Generalized Automatic Sequences. Journal of Automata, Languages and Combinatorics 7(3), 351–376 (2002)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jörg Endrullis
    • 1
  • Clemens Grabmayer
    • 2
  • Dimitri Hendriks
    • 1
  1. 1.VU University AmsterdamThe Netherlands
  2. 2.Utrecht UniversityThe Netherlands

Personalised recommendations