Dynamic Communicating Automata and Branching High-Level MSCs

  • Benedikt Bollig
  • Aiswarya Cyriac
  • Loïc Hélouët
  • Ahmet Kara
  • Thomas Schwentick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7810)


We study dynamic communicating automata (DCA), an extension of classical communicating finite-state machines that allows for dynamic creation of processes. The behavior of a DCA can be described as a set of message sequence charts (MSCs). While DCA serve as a model of an implementation, we propose branching high-level MSCs (bHMSCs) on the specification side. Our focus is on the implementability problem: given a bHMSC, can one construct an equivalent DCA? As this problem is undecidable, we introduce the notion of executability, a decidable necessary criterion for implementability. We show that executability of bHMSCs is EXPTIME-complete. We then identify a class of bHMSCs for which executability effectively implies implementability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. Theoretical Computer Science 331(1), 97–114 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent programs with dynamic creation of threads. Logical Methods in Computer Science 7(4) (2011)Google Scholar
  3. 3.
    Bollig, B., Cyriac, A., Hélouët, L., Kara, A., Schwentick, T.: Dynamic Communicating Automata and Branching High-Level MSCs. Research Report LSV-12-20, LSV (November 2012)Google Scholar
  4. 4.
    Bollig, B., Hélouët, L.: Realizability of Dynamic MSC Languages. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 48–59. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Borgström, J., Gordon, A., Phillips, A.: A chart semantics for the Pi-calculus. Electronic Notes in Theoretical Computer Science 194(2), 3–29 (2008)CrossRefGoogle Scholar
  6. 6.
    Bozzelli, L., La Torre, S., Peron, A.: Verification of well-formed communicating recursive state machines. Theoretical Computer Science 403(2-3), 382–405 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 30(2) (1983)Google Scholar
  8. 8.
    Buscemi, M.G., Sassone, V.: High-Level Petri Nets as Type Theories in the Join Calculus. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 104–120. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algorithms for existentially bounded communicating automata. Information and Computation 204(6), 920–956 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level MSCs: Model-checking and realizability. Journal of Computer and System Sciences 72(4), 617–647 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hélouët, L., Jard, C.: Conditions for synthesis of communicating automata from HMSCs. In: Proceedings of FMICS 2000, pp. 203–224. Springer (2000)Google Scholar
  12. 12.
    Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M.A., Thiagarajan, P.S.: A theory of regular MSC languages. Inf. Comput. 202(1), 1–38 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    ITU-TS: ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva (February 2011)Google Scholar
  14. 14.
    Leucker, M., Madhusudan, P., Mukhopadhyay, S.: Dynamic Message Sequence Charts. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 253–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property. Theoretical Computer Science 237(1-2), 347–380 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lodaya, K., Weil, P.: Rationality in algebras with a series operation. Information and Computation 171(2), 269–293 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lohrey, M.: Realizability of high-level message sequence charts: closing the gaps. Theoretical Computer Science 309(1-3), 529–554 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Meyer, R.: On Boundedness in Depth in the π-Calculus. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Proceedings of IFIP TCS 2008, vol. 273, pp. 477–489. Springer, Boston (2008)Google Scholar
  19. 19.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Information and Computation 100(1), 1–40 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Morin, R.: Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Benedikt Bollig
    • 1
  • Aiswarya Cyriac
    • 1
  • Loïc Hélouët
    • 2
  • Ahmet Kara
    • 3
  • Thomas Schwentick
    • 3
  1. 1.LSV, ENS CachanCNRS & INRIAFrance
  2. 2.INRIA/IRISARennesFrance
  3. 3.Lehrstuhl Informatik 1TU DortmundGermany

Personalised recommendations