Discovering Branching Conditions from Business Process Execution Logs

  • Massimiliano de Leoni
  • Marlon Dumas
  • Luciano García-Bañuelos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7793)


Process mining is a family of techniques to discover business process models and other knowledge of business processes from event logs. Existing process mining techniques are geared towards discovering models that capture the order of execution of tasks, but not the conditions under which tasks are executed – also called branching conditions. One existing process mining technique, namely ProM’s Decision Miner, applies decision tree learning techniques to discover branching conditions composed of atoms of the form “v op c” where “v” is a variable, “op” is a comparison predicate and “c” is a constant. This paper puts forward a more general technique to discover branching conditions where the atoms are linear equations or inequalities involving multiple variables and arithmetic operators. The proposed technique combine invariant discovery techniques embodied in the Daikon system with decision tree learning techniques.


  1. 1.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  2. 2.
    Rozinat, A., van der Aalst, W.M.P.: Decision Mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of Computer Programming 69, 35–45 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    de Leoni, M., van der Aalst, W.M.P.: Discovery of data-aware process models. In: Proc. of the 28th ACM Symposium on Applied Computing (SAC 2013). ACM (2013)Google Scholar
  5. 5.
    Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically Discovering Likely Program Invariants to Support Program Evolution. IEEE Trans. Software Eng. 27, 99–123 (2001)CrossRefGoogle Scholar
  6. 6.
    Guo, P.J., Perkins, J.H., McCamant, S., Ernst, M.D.: Dynamic inference of abstract types. In: Proc. of ISSTA 2006, pp. 255–265. ACM (2006)Google Scholar
  7. 7.
    Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models. In: Proc. of ICSE 2008, pp. 501–510. IEEE (2008)Google Scholar
  8. 8.
    Lo, D., Maoz, S.: Scenario-based and value-based specification mining: better together. Autom. Softw. Eng. 19, 423–458 (2012)CrossRefGoogle Scholar
  9. 9.
    Kuzmina, N., Paul, J., Gamboa, R., Caldwell, J.: Extending dynamic constraint detection with disjunctive constraints. In: Proc. of WODA 2008, pp. 57–63. ACM (2008)Google Scholar
  10. 10.
    Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover polynomial and array invariants. In: Proc. of ICSE 2012, pp. 683–693. IEEE (2012)Google Scholar
  11. 11.
    Ammons, G., Bodík, R., Larus, J.R.: Mining specifications. In: Proc. of POLP 2002, pp. 4–16. ACM (2002)Google Scholar
  12. 12.
    Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using automata-based abstractions. In: Proc. of ISSTA 2007, pp. 174–184. ACM (2007)Google Scholar
  13. 13.
    Lo, D., Khoo, S.C., Han, J., Liu, C. (eds.): Mining Software Specifications: Methodologies and applications. CRC Press (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Massimiliano de Leoni
    • 1
  • Marlon Dumas
    • 2
  • Luciano García-Bañuelos
    • 2
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.University of TartuTartuEstonia

Personalised recommendations