On Distributability in Process Calculi

  • Kirstin Peters
  • Uwe Nestmann
  • Ursula Goltz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7792)


We present a novel approach to compare process calculi and their synchronisation mechanisms by using synchronisation patterns and explicitly considering the degree of distributability. For this, we propose a new quality criterion that (1) measures the preservation of distributability and (2) allows us to derive two synchronisation patterns that separate several variants of pi-like calculi. Precisely, we prove that there is no good and distributability-preserving encoding from the synchronous pi-calculus with mixed choice into its fragment with only separate choice, and neither from the asynchronous pi-calculus (without choice) into the join-calculus.


Parallel Operator Target Language Expressive Power Reduction Rule Process Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berry, G., Boudol, G.: The Chemical Abstract Machine. In: Proc. of POPL. SIGPLAN-SIGACT, pp. 81–94 (1990)Google Scholar
  2. 2.
    Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Boudol, G.: Asynchrony and the π-calculus (note). Note, INRIA (1992)Google Scholar
  4. 4.
    Cacciagrano, D., Corradini, F., Palamidessi, C.: Explicit fairness in testing semantics. Logical Methods in Computer Science 5(2), 1–27 (2009)MathSciNetGoogle Scholar
  5. 5.
    Carbone, M., Maffeis, S.: On the Expressive Power of Polyadic Synchronisation in π-Calculus. Nordic Journal of Computing 10(2), 70–98 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dijkstra, E.W.: Hierarchical Ordering of Sequential Processes. Acta Informatica 1(2), 115–138 (1971)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fournet, C., Gonthier, G.: The Reflexive CHAM and the Join-Calculus. In: Proc. of POPL. SIGPLAN-SIGACT, pp. 372–385 (1996)Google Scholar
  8. 8.
    Gorla, D.: Towards a Unified Approach to Encodability and Separation Results for Process Calculi. Information and Computation 208(9), 1031–1053 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press (2007)Google Scholar
  10. 10.
    Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  11. 11.
    Laneve, C., Vitale, A.: The Expressive Power of Synchronizations. In: Proc. of LICS, pp. 382–391 (2010)Google Scholar
  12. 12.
    Lévy, J.-J.: Some Results in the Join-Calculus. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 233–249. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, New York (1999)Google Scholar
  14. 14.
    Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I and II. Information and Computation 100(1), 1–77 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Milner, R., Sangiorgi, D.: Barbed Bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  16. 16.
    Nestmann, U.: What is a “Good” Encoding of Guarded Choice? Information and Computation 156(1-2), 287–319 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the Asynchronous π-calculus. Mathematical Structures in Computer Science 13(5), 685–719 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Peters, K.: Translational Expressiveness. PhD thesis, TU Berlin (2012),
  19. 19.
    Peters, K., Nestmann, U.: Is It a “Good” Encoding of Mixed Choice? In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 210–224. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Peters, K., Nestmann, U., Goltz, U.: On Distributability in Process Calculi (Appendix). Technical Report, TU Berlin (2013),
  21. 21.
    Peters, K., Schicke-Uffmann, J.-W., Nestmann, U.: Synchrony vs Causality in the Asynchronous Pi-Calculus. In: Proc. of EXPRESS. EPTCS, vol. 64, pp. 89–103 (2011)Google Scholar
  22. 22.
    Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60, 17–140 (2004); (An earlier version of this paper was published as technical report at Aarhus University in 1981)Google Scholar
  23. 23.
    van Glabbeek, R.: The Linear Time – Branching Time Spectrum I: The Semantics of Concrete, Sequential Processes. Handbook of Process Algebra, 3–99 (2001)Google Scholar
  24. 24.
    van Glabbeek, R., Goltz, U., Schicke, J.-W.: On Synchronous and Asynchronous Interaction in Distributed Systems. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 16–35. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    van Glabbeek, R., Goltz, U., Schicke-Uffmann, J.-W.: On Distributability of Petri Nets. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 331–345. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kirstin Peters
    • 1
  • Uwe Nestmann
    • 1
  • Ursula Goltz
    • 2
  1. 1.TU BerlinGermany
  2. 2.TU BraunschweigGermany

Personalised recommendations