On Distributability in Process Calculi

  • Kirstin Peters
  • Uwe Nestmann
  • Ursula Goltz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7792)


We present a novel approach to compare process calculi and their synchronisation mechanisms by using synchronisation patterns and explicitly considering the degree of distributability. For this, we propose a new quality criterion that (1) measures the preservation of distributability and (2) allows us to derive two synchronisation patterns that separate several variants of pi-like calculi. Precisely, we prove that there is no good and distributability-preserving encoding from the synchronous pi-calculus with mixed choice into its fragment with only separate choice, and neither from the asynchronous pi-calculus (without choice) into the join-calculus.


  1. 1.
    Berry, G., Boudol, G.: The Chemical Abstract Machine. In: Proc. of POPL. SIGPLAN-SIGACT, pp. 81–94 (1990)Google Scholar
  2. 2.
    Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Boudol, G.: Asynchrony and the π-calculus (note). Note, INRIA (1992)Google Scholar
  4. 4.
    Cacciagrano, D., Corradini, F., Palamidessi, C.: Explicit fairness in testing semantics. Logical Methods in Computer Science 5(2), 1–27 (2009)MathSciNetGoogle Scholar
  5. 5.
    Carbone, M., Maffeis, S.: On the Expressive Power of Polyadic Synchronisation in π-Calculus. Nordic Journal of Computing 10(2), 70–98 (2003)MathSciNetMATHGoogle Scholar
  6. 6.
    Dijkstra, E.W.: Hierarchical Ordering of Sequential Processes. Acta Informatica 1(2), 115–138 (1971)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fournet, C., Gonthier, G.: The Reflexive CHAM and the Join-Calculus. In: Proc. of POPL. SIGPLAN-SIGACT, pp. 372–385 (1996)Google Scholar
  8. 8.
    Gorla, D.: Towards a Unified Approach to Encodability and Separation Results for Process Calculi. Information and Computation 208(9), 1031–1053 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press (2007)Google Scholar
  10. 10.
    Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  11. 11.
    Laneve, C., Vitale, A.: The Expressive Power of Synchronizations. In: Proc. of LICS, pp. 382–391 (2010)Google Scholar
  12. 12.
    Lévy, J.-J.: Some Results in the Join-Calculus. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 233–249. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, New York (1999)Google Scholar
  14. 14.
    Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I and II. Information and Computation 100(1), 1–77 (1992)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Milner, R., Sangiorgi, D.: Barbed Bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  16. 16.
    Nestmann, U.: What is a “Good” Encoding of Guarded Choice? Information and Computation 156(1-2), 287–319 (2000)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the Asynchronous π-calculus. Mathematical Structures in Computer Science 13(5), 685–719 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Peters, K.: Translational Expressiveness. PhD thesis, TU Berlin (2012), http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-37495
  19. 19.
    Peters, K., Nestmann, U.: Is It a “Good” Encoding of Mixed Choice? In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 210–224. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Peters, K., Nestmann, U., Goltz, U.: On Distributability in Process Calculi (Appendix). Technical Report, TU Berlin (2013), http://www.mtv.tu-berlin.de/fileadmin/a3435/pubs/distProcCal.pdf
  21. 21.
    Peters, K., Schicke-Uffmann, J.-W., Nestmann, U.: Synchrony vs Causality in the Asynchronous Pi-Calculus. In: Proc. of EXPRESS. EPTCS, vol. 64, pp. 89–103 (2011)Google Scholar
  22. 22.
    Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60, 17–140 (2004); (An earlier version of this paper was published as technical report at Aarhus University in 1981)Google Scholar
  23. 23.
    van Glabbeek, R.: The Linear Time – Branching Time Spectrum I: The Semantics of Concrete, Sequential Processes. Handbook of Process Algebra, 3–99 (2001)Google Scholar
  24. 24.
    van Glabbeek, R., Goltz, U., Schicke, J.-W.: On Synchronous and Asynchronous Interaction in Distributed Systems. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 16–35. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    van Glabbeek, R., Goltz, U., Schicke-Uffmann, J.-W.: On Distributability of Petri Nets. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 331–345. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kirstin Peters
    • 1
  • Uwe Nestmann
    • 1
  • Ursula Goltz
    • 2
  1. 1.TU BerlinGermany
  2. 2.TU BraunschweigGermany

Personalised recommendations