Melt Pond Determination from MODIS Data

  • Anja Rösel
Part of the Hamburg Studies on Maritime Affairs book series (HAMBURG, volume 25)


As demonstrated in Sect.  4.1, the extensive Landsat archive is not suitable to generate neither a multi-annual nor an Arctic-wide melt pond data set. Because of the comparatively lower resolution and wider swath width of the MODIS sensor, a continuous spatial coverage of the Arctic with satellite data is available. There is however, a downside to the lower resolution. Given, that one MODIS pixel represents an area of 250 m ×250 m, it must be assumed that each pixel above sea ice contains more than one surface type. In remote sensing, these pixels are called “mixed pixels”. Since no specific surface type can be assigned to the “mixed pixels”, the two in  Chap. 4 described methods for determining melt ponds from Landsat data are not applicable on MODIS data. Therefore, another approach, which considers these “mixed pixels”, is introduced.


Root Mean Square Error Cloud Mask Canadian Archipelago MODIS Surface Reflectance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ackerman, Frey, Strabala, Liu, Gumley, Baum, Menzel: Discriminating clear-sky from cloud with modis - algorithm theoretical basis document. Tech. rep., Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin - Madison (2010)Google Scholar
  2. 2.
    Agarwal, S., Moon, W., Wettlaufer, J.S.: Decadal to seasonal variability of arctic sea ice albedo. Geophysical Research Letters 38, L20,504 (2011). DOI 10.1029/2011GL049109Google Scholar
  3. 3.
    Atkinson, P.M., Tatnall, A.R.L.: Introduction - neural networks in remote sensing. International Journal of Remote Sensing 18, 699–709 (1997). DOI 10.1080/014311697218700CrossRefGoogle Scholar
  4. 4.
    Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S.J., Brian, G., Gorodetzky, D.: The landsat image mosaic of Antarctica. Remote Sensing of Environment 112, 4214–4226 (2008)CrossRefGoogle Scholar
  5. 5.
    Birnbaum, G.e., Dierking, W.e., Hartmann, J.e., Lüpkes, C.e., Ehrlich, A.e., Garbrecht, T.e., Sellmann, M.e.: The campaign meltex with research aircraft ”polar 5” in the arctic in 2008. Berichte zur Polar- und Meeresforschung/Reports on Polar and Marine Research 593, 3–85 (2009)Google Scholar
  6. 6.
    Brandt, R.E., Warren, S.G., Worby, A.P., Grenfell, T.C.: Surface albedo of the Antarctic sea ice zone. Journal of Climate 18, 3606–3622 (2005)CrossRefGoogle Scholar
  7. 7.
    Cavalieri, D.J., Burns, B.A., Onstott, R.G.: Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data. Journal of Geophysical Research 95, No. C4, 5359–5369 (1990)Google Scholar
  8. 8.
    Cavalieri, D.J., Markus, T., Hall, D.K., Gasiewski, A.J., Klein, M., Ivanoff, A.: Assessment of eos aqua amsr-e arctic sea ice concentrations using landsat-7 and airborne microwave imagery. IEEE Transactions on Geoscience and Remote Sensing 44(11, Part 1), 3057–3069 (2006). DOI 10.1109/TGRS.2006.878445Google Scholar
  9. 9.
    Chander, G., Markham, B.L., Helder, D.L.: Summary of current radiometric calibration coefficients for landsat mss, tm, etm+, and eo-1 ali sensors. Remote Sensing of Environment 113(5), 893–903 (2009). DOI DOI: 10.1016/j.rse.2009.01.007Google Scholar
  10. 10.
    Comiso, J.C.: Ssm/i sea ice concentrations using the bootstrap algorithm. NASA Reference Publication 1380, 1–50 (1995)Google Scholar
  11. 11.
    Comiso, J.C.: Large decadal decline of the arctic multiyear ice cover. Journal of Climate 25, 1176–1193 (2012)CrossRefGoogle Scholar
  12. 12.
    Comiso, J.C., Kwok, R.: Surface and radiative characteristics of the summer arctic sea ice cover from multisensor satellite observation. Journal of Geophysical Research 101, No. C12, 28,397–28,416 (1996)Google Scholar
  13. 13.
    Curry, J.A., Schramm, J.L., Ebert, E.E.: Sea ice-albedo climate feedback mechanism. Journal of Climate 8, 240–247 (1995)CrossRefGoogle Scholar
  14. 14.
    Duarte, C.M., Lenton, T.M., Wadhams, P., Wassmann, P.: Abrupt climate change in the arctic. Nature Climate Change 2, 60–62 (2012)CrossRefGoogle Scholar
  15. 15.
    Ehn, J.K., Mundy, C.J., Barber, D.G., Hop, H., Rossnagel, A., Stewart, J.: Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian arctic. Journal of Geophysical Research 116, C00G02 (2011). DOI 10.1029/2010JC006980Google Scholar
  16. 16.
    Eicken, H., Grenfell, T.C., Perovich, D.K., Richter-Menge, J.A., Frey, K.: Hydraulic controls of summer arctic pack ice albedo. Journal of Geophysical Research 109, C08,007 (2004). DOI 10.1029/2003JC001989Google Scholar
  17. 17.
    Eicken, H., Krouse, H.R., Kadko, D., Perovich, D.K.: Tracer studies of pathways and rates of meltwater transport through arctic summer sea ice. Journal of Geophysical Research 107, C10,8046 (2002)Google Scholar
  18. 18.
    Eisenman, I., Wettlaufer, J.S.: Nonlinear threshold behavior during the loss of arctic sea ice-albedo. PNAS 106, 28–32 (2009). DOI 10.1073/pnas.0806887106CrossRefGoogle Scholar
  19. 19.
    El Naggar, S., Garrity, C., Ramseier, R.: Sea ice meltpond morphology and size distribution as determined from line scan camera local measurements in the arctic. IAPSO Proceedings XXI General Assembly 19, Honolulu, Hawaii, 5–12 August (1995)Google Scholar
  20. 20.
    Fetterer, F., Knowles, K., Meier, W., Savoie, M.: Sea ice index (2002, updated 2009). URL
  21. 21.
    Fetterer, F., Untersteiner, N.: Observations of melt ponds on arctic sea ice. Journal of Geophysical Research 103, 24, 821–24, 835 (1998)Google Scholar
  22. 22.
    Fetterer, F., Wilds, S., Sloan, J.: Arctic sea ice melt pond statistics and maps, 1999–2001. Digital Media (ftp) (2008). URL
  23. 23.
    Frey, K.E., Perovich, D.K., Light, B.: The spatial distribution of solar radiation under a melting arctic sea ice cover. Geophysical Research Letters 38, L22,501 (2011). DOI 10.1029/2011GL049421Google Scholar
  24. 24.
    GDAL Development Team: GDAL - Geospatial Data Abstraction Library, Version 1.8.1. Open Source Geospatial Foundation (2011). URL
  25. 25.
    Gonzalez Vilas, L., Evangelos, S., Torres Palenzuela, J.M.: Neural network estimation of chlorophyll a from meris full resolution data for the coastal waters of galician rias (nw Spain). Remote Sensing of Environment 115, 524–535 (2011)CrossRefGoogle Scholar
  26. 26.
    Grenfell, T., Maykut, G.: The optical properties of ice and snow in the arctic basin. Journal of Glaciology 18, 445–463 (1977)Google Scholar
  27. 27.
    Grenfell, T.C., Perovich, D.K.: Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort sea. Journal of Geophysical Research 89, 3573–3580 (1984)CrossRefGoogle Scholar
  28. 28.
    Grenfell, T.C., Perovich, D.K.: Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. Journal of Geophysical Research 109(C1), 15 pp. (2004)Google Scholar
  29. 29.
    Grenfell, T.C., Perovich, D.K.: Incident spectral irradiance in the arctic basin during the summer and fall. Journal of Geophysical Research 113, D12,117 (2008). DOI 10.1029/2007JD009418Google Scholar
  30. 30.
    Holland, M.M., Bitz, C.M., Tremblay, B.: Future abrupt reductions in the summer arctic sea ice. Geophysical Research Letters 33, L23,503 (2006). DOI 10.1029/2006GL028024Google Scholar
  31. 31.
    Howell, S.E.L., Tivy, A., Yackel, J., Scharien, R.: Application of a seawinds/quikscat sea ice melt algorithm for assessing melt dynamics in the canadian arctic archipelago. Journal of geophysical research: Biogeosciences 111(C7) (2006). DOI 10.1029/2005JC003193. URL
  32. 32.
    Itoh, M., Inoue, J., Shimada, K., Zimmermann, S., Kikuchi, T., Hutchings, J., McLaughlin, F., Carmack, E.: Acceleration of sea-ice melting due to transmission of solar radiation through ponded ice area in the arctic ocean: results of in situ observation from icebreakers in 2006 and 2007. Annals of Glaciology 52(57), 249–260 (2011)CrossRefGoogle Scholar
  33. 33.
    Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python. electronic (2001). URL
  34. 34.
    Kramer, H.J.: Observation of the Earth and its environment: survey of missions and sensors. Springer Verlag (2002)Google Scholar
  35. 35.
    Kurtz, N.T., Markus, T., Farrell, S.L., Worthen, D.L., Boisvert, L.N.: Observations of recent arctic sea ice volume loss and its impact on ocean-atmosphere energy exchange and ice production. Journal of Geophysical Research 116, C04,015 (2011). DOI 10.1029/2010JC006235Google Scholar
  36. 36.
    Kwok, R.: New high-resolution images of summer arctic sea ice. EOS 7, 53–54 (2011)CrossRefGoogle Scholar
  37. 37.
    Kwok, R., Untersteiner, N.: The thinning of arctic sea ice. Physics today 41, 36–41 (2011)CrossRefGoogle Scholar
  38. 38.
    Landsat 7 Science Data Users Handbook: Landsat 7 Science Data Users Handbook (2009)Google Scholar
  39. 39.
    Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.J.: Tipping elements in the earth’s climate system. PNAS 115(6), 1786–1793 (2008)CrossRefGoogle Scholar
  40. 40.
    Levermann, A., Bamber, J.L., Drijfhout, S., Ganopolski, A., Haeberli, W., Harris, N.R.P., Huss, M., Krüger, K., Lenton, T.M., Lindsay, R.W., Notz, D., Wadhams, P., Weber, S.: Potential climatic transitions with profound impact on Europe. Climatic Change (2011). DOI 10.1007/s10584-011-0126-5Google Scholar
  41. 41.
    Liu, Y., Ackerman, S.A., Maddux, B.C., Key, J.R., Frey, R.A.: Errors in cloud detection over the arctic using a satellite imager and implications for observing feedback mechanisms. Journal of Climate 23, 1894–1907 (2009). DOI 10.1175/2009JCLI3386.1 10.1175/2009JCLI3386.1 10.1175/2009JCLI3386.1 10.1175/2009JCLI3386.1 10.1175/2009JCLI3386.1Google Scholar
  42. 42.
    Markus, T., Cavalieri, D.J.: An enhancement of the nasa team sea ice algorithm. IEEE Transactions on Geoscience and Remote Sensing 38(3), 1387–1389 (2000)CrossRefGoogle Scholar
  43. 43.
    Markus, T., Cavalieri, D.J., Ivanoff, A.: The potential of using landsat 7 etm+ for the classification of sea-ice surface conditions during summer. Annals of Glaciology 34, 415–419 (2002)CrossRefGoogle Scholar
  44. 44.
    Markus, T., Cavalieri, D.J., Tschudi, M.A., Ivanoff, A.: Comparison of aerial video and landsat 7 data over ponded sea ice. Remote Sensing of Environment 86, 458–469 (2003). DOI 10.1016/S0034-4257(03)00124-XCrossRefGoogle Scholar
  45. 45.
    Markus, T., Stroeve, J.C., Miller, J.: Recent changes in arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Research 114 (2009). DOI 10.1029/2009JC005436Google Scholar
  46. 46.
    Maslanik, J., Drobot, S., Fowler, C., McPhee, G., Emery, W., Barry, R.: On the arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophysical Research Letters 34, L03,711 (2007). DOI 10.1029/2006GL028269Google Scholar
  47. 47.
    Maslanik, J., Stroeve, J., Fowler, C., Emery, W.: Distribution and trends in arctic sea ice age through spring 2011. Geophysical Research Letters 38, L13,502 (2011). DOI 10.1029/2011GL047735Google Scholar
  48. 48.
    MODIS Level 1B Product User’s Guide: MODIS Level 1B Product User’s Guide. NASA/Goddard Space Flight Center (2006)Google Scholar
  49. 49.
    Morassutti, M.P., LeDrew, E.F.: Albedo and depth of melt ponds on sea-ice. International Journal of Climatology 16, 817–838 (1996). DOI 10.1002/(SICI)1097-0088(199607)16:7¡817::AID-JOC44¿3.0.CO;2-5CrossRefGoogle Scholar
  50. 50.
    Nicolaus, M., Gerland, S., Hudson, S.R., Hanson, S., Haapala, J., Perovich, D.K.: Seasonality of spectral albedo and transmittance as observed in the arctic transpolar drift in 2007. Journal of Geophysical Research 115, C11,011 (2010). DOI 10.1029/2009JC006074Google Scholar
  51. 51.
    Nocedal, J., Wright, S.J.: Numerical Optimization (2nd ed.). Springer (2006)Google Scholar
  52. 52.
    Notz, D.: The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss. PNAS 106, 20,590–20,595 (2009). DOI 10.1073/pnas.0902356106Google Scholar
  53. 53.
    Overland, J., Bhatt, U., Key, J., Liu, Y., Walsh, J., Wang, M.: Temperature and clouds (2011). URL
  54. 54.
    Perovich, D.K.: The optical properties of sea ice. CRREL Monograph 96-1, 25 pp. (1996)Google Scholar
  55. 55.
    Perovich, D.K., Grenfell, T.C., Light, B., Elder, B.C., Harbeck, J., Polashenski, C., Tucker III, W.B., Stelmach, C.: Transpolar observations of the morphological properties of arctic sea ice-albedo. Journal of Geophysical Research. 114, C00A04 (2009). DOI 10.1029/2008JC004892Google Scholar
  56. 56.
    Perovich, D.K., Grenfell, T.C., Light, B., Hobbs, P.V.: Seasonal evolution of the albedo of multiyear arctic sea ice. Journal of Geophysical Research. 107(C10), 8044 (2002). DOI 10.1029/2000JC000438CrossRefGoogle Scholar
  57. 57.
    Perovich, D.K., Jones, K.F., Light, B., Eicken, H., Markus, T., Stroeve, J., Lindsay, R.: Solar partitioning in a changing arctic sea-ice cover. Annals of Glaciology 52(57), 192–196 (2011)CrossRefGoogle Scholar
  58. 58.
    Perovich, D.K., Light, B., Eicken, H., Jones, K.F., Runciman, K., Nghiem, S.V.: Increasing solar heating of the arctic ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophysical Research Letters 34, L19,505 (2007). DOI 10.1029/2007GL031480Google Scholar
  59. 59.
    Perovich, D.K., Richter-Menge, J.A., Jones, K.F., Light, B., Elder, B.C., Polashenski, C., Laroche, D., Markus, T., Lindsay, R.: Arctic sea-ice melt in 2008 and the role of solar heating. Annals of Glaciology 52(57), 355–359 (2011)CrossRefGoogle Scholar
  60. 60.
    Perovich, D.K., Tucker, W.B.I.: Arctic sea-ice conditions and distribution of solar radiation during summer. Annals of Glaciology 25, 445–450 (1997)Google Scholar
  61. 61.
    Perovich, D.K., Tucker III, W.B., Ligett, K.A.: Aerial observations of the evolution of ice surface conditions during summer. Journal of Geophysical Research. 107, 8048 (2002). DOI 10.1029/2000JC000449CrossRefGoogle Scholar
  62. 62.
    Petty, W.G.: A First Course in Atmospheric Radiation, 2nd edn. Sundog Publishing (2006)Google Scholar
  63. 63.
    Rösel, A., Kaleschke, L.: Comparison of different retrieval techniques for melt ponds on arctic sea ice from landsat and modis satellite data. Annals of Glaciology 52(57), 185–191 (2011)CrossRefGoogle Scholar
  64. 64.
    Rösel, A., Kaleschke, L.: Exceptional melt pond occurrence in the years 2007 and 2011 on the arctic sea ice archived from modis satellite data. Journal of Geophysical Research 117, C05,018 (2012). DOI 10.1029/2011JC007869Google Scholar
  65. 65.
    Rösel, A., Kaleschke, L., Birnbaum, G.: Melt ponds on arctic sea ice determined from modis satellite data using an artificial neuronal network. The Cryosphere 6-2, 431–446 (2012). DOI 10.5194/tcd-6-431-2012CrossRefGoogle Scholar
  66. 66.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)CrossRefGoogle Scholar
  67. 67.
    Sankelo, P., Haapala, J., Heiler, I., Eero, R.: Melt pond formation and temporal evolution at the station tara during summer 2007. Polar Research 29, 311–321 (2010). DOI 10.1111/j.1751-8369.2010.00161.xGoogle Scholar
  68. 68.
    Schweiger, A.J., Zhang, J., Lindsay, R.W., Steele, M.: Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophysical Research Letters 35, L10,503 (2008). DOI 10.1029/2008GL033463Google Scholar
  69. 69.
    Serreze, M.C.: Rethinking the sea-ice tipping point. Nature 471, 47–48 (2011). DOI 10.1038/471047aCrossRefGoogle Scholar
  70. 70.
    Serreze, M.C., Barrett, A.P., Cassano, J.J.: Circulation and surface controls on the lower tropospheric air temperature field of the arctic. Journal of Geophysical Research 116, D07,104 (2011). DOI 10.1029/2010JD015127Google Scholar
  71. 71.
    Serreze, M.C., Maslanik, J.A., Scharfen, G.R., Barry, R.G., Robinson, D.A.: Interannual variations in snow melt over arctic sea ice and relationships to atmospheric forcings. Annals of Glaciology 17, 327–331 (1993)Google Scholar
  72. 72.
    Shokr, M.E., Sinha, N.K.: Arctic sea ice microstructure observations relevant to microwave scattering. Arctic 47, No. 3, 265–279 (1994)Google Scholar
  73. 73.
    Spreen, G., Kaleschke, L., Heygster, G.: Sea ice remote sensing using amsr-e 89-ghz channels. Journal of Geophysical Research 113, C02S03 (2008). DOI 10.1029/2005JC003384Google Scholar
  74. 74.
    Steffen, K., Schweiger, A.: Nasa team algorithm for sea ice concentration retrieval from defense meteorological satellite program special sensor microwave imager: comparison with landsat satellite imagery. Journal of Geophysical Research 96(C12), 21,971–87 (1991)Google Scholar
  75. 75.
    Stroeve, J., Serreze, M., Drobot, S., Gearheard, S., Holland, M., Maslanik, J., Meier, W., Scambos, T.: Arctic sea ice extent plummets in 2007. EOS, Transction, AGU 89, 13–20 (2008)CrossRefGoogle Scholar
  76. 76.
    Stroeve, J.C., Serreze, M.C., Kay, J.E., Holland, M.M., Meier, W.M., Barrett, A.P.: The arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change (2011). DOI 10.1007/s10584-011-0101-1Google Scholar
  77. 77.
    Tietsche, S., Notz, D., Jungclaus, J.H., Marotzke, J.: Recovery mechanisms of arctic summer sea ice. Geophysical Research Letters 38, L02,707 (2011). DOI 10.1029/2010GL045698Google Scholar
  78. 78.
    Tschudi, M., Curry, J., Maslanik, J.: Determination of areal surface-feature coverage in the beaufort sea using aircraft video data. Annals of Glaciology 25, 434–438 (1997)Google Scholar
  79. 79.
    Tschudi, M., Curry, J., Maslanik, J.: Airborne observations of summertime surface features and their effect on surface albedo during fire/sheba. Journal of Geophysical Research. 106(D14), 15, 335–15, 344 (2001)Google Scholar
  80. 80.
    Tschudi, M.A., Maslanik, J.A., Perovich, D.K.: Melt pond coverage on arctic sea ice from modis. In: Proceeding, Amer. Met. Soc. 8th Conf. on Polar Meteorology and Ocean, San Diego, CA, 8–14 January, 2005 (2005)Google Scholar
  81. 81.
    Tschudi, M.A., Maslanik, J.A., Perovich, D.K.: Derivation of melt pond coverage on arctic sea ice using modis observation. Remote Sensing of Environment 112, 2605–2614 (2008). DOI 10.1016/j.rse.2007.12.009CrossRefGoogle Scholar
  82. 82.
    Vermonte, E.F., Kotchenova, S.Y., Ray, J.P.: MODIS Surface Reflectance User’s Guide. MODIS Land Surface Reflectance Science Computing Facility, version 1.2 edn. (2008). URL
  83. 83.
    Warren, S.G.: Optical properties of snow. Reviews of Geophysics and Space Physics 20, 67–89 (1982)CrossRefGoogle Scholar
  84. 84.
    WMO: WMO Sea-Ice Nomenclature. WMO/Omm/BMO, tp. 145, supplement no. 5 edn. (1989)Google Scholar
  85. 85.
    Wojciechowski, M.: Ffnet: Feed-forward neural network for python, (2011). URL, access date: 20 October 2011
  86. 86.
    Xiong, X., Stamnes, K., Lubin, D.: Surface albedo over the arctic ocean derived from avhrr and its validation with sheba data. Journal of applied Meteorology 41, 413–425 (2002)CrossRefGoogle Scholar
  87. 87.
    Yackel, J.J., Barber, D.G.: Melt ponds on sea ice in the canadian archipelago 2. on the use of radarsat-1 synthetic aperture radar for geophysical inversion. Journal of Geophysical Research 105(C9), 22,061–22,070 (2000). DOI 10.1029/2000JC900076. URL
  88. 88.
    Yackel, J.J., Barber, D.G., Hanesiak, J.M.: Melt ponds on sea ice in the canadian archipelago: 1. variability in morphological and radiative properties. Journal of Geophysical Research 105(C9), 22,049–22,060 (2000). DOI 10.1029/2000JC900076Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anja Rösel
    • 1
  1. 1.Institute of OceanographyUniversity of HamburgHamburgGermany

Personalised recommendations