Microwave Sensors for Real-Time Nutrients Detection in Water

Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 4)


Current wastewater monitoring techniques rely on the use of nutrients detection as the result of some chemical reaction, which is undesirable for long-term use in real-time applications. In addition, new legislation may render such systems obsolete if they cannot reliably determine the amount of nutrients in wastewater relative to allowable levels. This chapter attempts to address this issue by considering the use of microwave sensing techniques as an alternative real-time approach that has the potential to monitor wastewater nutrients such as phosphate and nitrate. The method utilizes a broad range of microwave frequencies (1-15 GHz) and is demonstrated with two different types of structure for this purpose, namely a traditional resonant cavity and a flexible interdigitated electrode structure. A variety of experimental results are shown that validate the applicability of the microwave sensing for detecting phosphates and nitrates in the solutions. LabView software used for analysis of captured data and for easy user interpretation of this data is also demonstrated. Future work to be undertaken is discussed in relation to improving the performance of the sensor further, as well as adding the capability to automatically determine both the type and concentration of nutrients in water solutions.


Water quality monitoring wastewater nitrate phosphate microwave sensor interdigitated electrode flexible sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Concerning urban waste water treatment, Council Directive (91/271/EEC) (1991)Google Scholar
  2. 2.
    E. Agency. Urban Waste Water Treatment Directive, (April 2, 2012),
  3. 3.
    D. o. E. F. a. R. A. (DEFRA), Sewage Treatment in the UK, London (2002)Google Scholar
  4. 4.
    Vowell, P.: Aqua cycle, vol. 2011 (2010)Google Scholar
  5. 5.
    Gilmore, A., Tighe, C., Donato, T., Gill, M.L.: D.O. Home (2010)Google Scholar
  6. 6.
    Guyer, H.H.: Industrial processes and waste stream management. John wiley and sons, Canada (1998)Google Scholar
  7. 7.
    E. Agency, Treatment of non-hazardous wastes for landfill, Bristol, UK (2007)Google Scholar
  8. 8.
    E. Agency. Urban waste water treatment (June 15, 2011),
  9. 9.
    Henze, M., Loosdrecht, M., Ekama, G., Brdjanovic, D.: Biological wastewater treatment: principle, modeling and design. IWA Publishing (2008)Google Scholar
  10. 10.
    Gerardi, M.H.: Nitrification and denitrification in the activated sludge process. John Wiley and Sons, New York (2002)CrossRefGoogle Scholar
  11. 11.
    Droste, R.L.: Theory and practice of Water and wastewater treatment. John Wieley & Sons (1997)Google Scholar
  12. 12.
    Davis, M.L., Cornwell, D.A.: Introduction to Enviromental Engineering, 2nd edn. McGraw-Hill (1991)Google Scholar
  13. 13.
    Halling-Sorensen, B., Jorgensen, S.E.: The removal of nitrogen compounds from wastewater. Elsevier Science (1993)Google Scholar
  14. 14.
    Bababjanyan, A., Melikyan, H., Kim, S., Kim, J., Lee, K., Friedman, B.: Real-Time Noninvasive Measurement of Glucose Concentration Using a Microwave Biosensor. Journal of Sensors 2010 (2010)Google Scholar
  15. 15.
    Cataldo, A., Piuzzi, E., Cannazza, G., De Benedetto, E., Tarricone, L.: Quality and anti-adulteration control of vegetable oils through microwave dielectric spectroscopy. Measurement 43, 1031–1039 (2010)CrossRefGoogle Scholar
  16. 16.
    Choi, J., Cho, J., Lee, Y., Yim, J., Kang, B., Oh, K., Jung, W., Kim, H., Cheon, C., Lee, H.: Microwave Detection of Metastasized Breast Cancer Cells in the Lymph Node; Potential Application for Sentinel Lymphadenectomy. Breast Cancer Research and Treatment 86, 107–115 (2004)CrossRefGoogle Scholar
  17. 17.
    Nyfors, E., Vainikainen, P.: Industrial microwave sensors. In: IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1009–1012 (1991)Google Scholar
  18. 18.
    Goh, J.H., Mason, A., Al-Shamma’a, A.I., Field, M., Shackloth, M., Browning, P.: Non Invasive Microwave Sensor for the Detection of Lactic Acid in Cerebrospinal Fluid (CSF). Presented at the Sensors and their Applications XVI, Cork, Ireland (2011)Google Scholar
  19. 19.
    Mason, A., Wylie, S., Thomas, A., Keele, H., Shaw, A., Al-Shamma’a, A.I.: HEPA Filter Material Load Detection Using a Microwave Cavity Sensor. International Journal on Smart Sensing and Intelligent Systems 3, 322–337 (2010)Google Scholar
  20. 20.
    Al-Dasoqi, N., Mason, A., Alkhaddar, R., Al-Shamma’a, A.I.: Use of Sensors in Wastewater Quality Monitoring - A Review of Available Technologies. Presented at the 2011 World Environmental & Water Resources Congress, Palm Springs, California (2011)Google Scholar
  21. 21.
    Korostynska, O., Mason, A., Al-Shamma’a, A.I.: Monitoring of Nitrates and Phosphates in Wastewater: Current Technologies and Further Challenges. International Journal on Smart Sensing and Intelligent Systems 5, 149–176 (2012)Google Scholar
  22. 22.
    Kajfez, D.: Temperature characterization of dielectric-resonator materials. Journal of the European Ceramic Society 21, 2663–2667 (2001)CrossRefGoogle Scholar
  23. 23.
    Afsar, M.N., Birch, J.R., Clarke, R.N., Chantry, G.W.: The measurement of the properties of materials. Proceedings of the IEEE 74, 183–199 (1986)CrossRefGoogle Scholar
  24. 24.
    Pozar, D.M.: Circular Waveguide. In: Microwave Engineering, 3rd edn., pp. 119–120. John Wiley and Sons, New York (2005)Google Scholar
  25. 25.
    Ansys, Ansys HFSS (2012),
  26. 26.
    Goh, J.H., Mason, A., Al-Shamma’a, A.I., Field, M., Browning, P.: Lactate Detection Using Microwave Spectroscopy for In-Situ Medical Applications. International Journal on Smart Sensing and Intelligent Systems 4, 338–352 (2011)Google Scholar
  27. 27.
    Blakey, R.T., Mason, A., Al-Shamma’a, A.I., Rolph, C.E., Bond, G.: Dielectric Characteristics of Lipid Droplet Suspensions Using the Small Perturbation Technique. Presented at the IMPI 46, Las Vegas, USA (2012)Google Scholar
  28. 28.
    Goh, J.H., Mason, A., Al-Shamma’a, A.I., Wylie, S., Field, M., Brown, P.: Lactate Detection Using a Microwave Cavity Sensor for Biomedical Applications. Presented at the Fifth International Conference on Sensing Technology, Palmerston North, New Zealand (2011)Google Scholar
  29. 29.
    Pozar, D.M.: TM Modes. In: Microwave Engineering, 3rd edn., pp. 121–123. John Wiley and Sons, New York (2005)Google Scholar
  30. 30.
    Catenaccio, A., Daruich, Y., Magallanes, C.: Temperature dependence of the permittivity of water. Chemical Physics Letters 367, 669–671 (2003)CrossRefGoogle Scholar
  31. 31.
    Tamura, H., Matsumoto, H., Wakino, K.: Low temperature properties of microwave dielectrics. Japanese Journal of Applied Physics 28, 21–23 (1989)CrossRefGoogle Scholar
  32. 32.
    Korostynska, O., Mason, A., Al-Shamma’a, A.I.: Proof-of-Concept Microwave Sensor on Flexible Substrate for Real-Time Water Composition Analysis. Presented at the ICST 2012: 6th International Conference on Sensing Technology, Kolkata, India (2012)Google Scholar
  33. 33.
    Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd edn. Wiley-Blackwell, United States (2005)Google Scholar
  34. 34.
    Levit, N., Pestov, D., Tepper, G.: High surface area polymer coatings for SAW-based chemical sensor applications. Sensors and Actuators B: Chemical 82, 241–249 (2002)CrossRefGoogle Scholar
  35. 35.
    Cornila, C., Hierlemann, A., Lenggenhager, R., Malcovati, P., Baltes, H., Noetzel, G., Weimar, U., Göpel, W.: Capacitive sensors in CMOS technology with polymer coating. Sensors and Actuators B: Chemical 25, 357–361 (1995)CrossRefGoogle Scholar
  36. 36.
    Tan, Y., Yin, J., Liang, C., Peng, H., Nie, L., Yao, S.: A study of a new TSM bio-mimetic sensor using a molecularly imprinted polymer coating and its application for the determination of nicotine in human serum and urine. Bioelectrochemistry 53, 141–148 (2001)CrossRefGoogle Scholar
  37. 37.
    Pandey, P.C., Upadhyay, S., Pathak, H.C.: A new glucose sensor based on encapsulated glucose oxidase within organically modified sol–gel glass. Sensors and Actuators B: Chemical 60, 83–89 (1999)CrossRefGoogle Scholar
  38. 38.
    Gupta, R., Mozumdar, S., Chaudhury, N.K.: Effect of ethanol variation on the internal environment of sol–gel bulk and thin films with aging. Biosensors and Bioelectronics 21, 549–556 (2005)CrossRefGoogle Scholar
  39. 39.
    Calabria, J.A., Vasconcelos, W.L., Daniel, D.J., Chater, R., McPhail, D., Boccaccini, A.R.: Synthesis of sol–gel titania bactericide coatings on adobe brick. Construction and Building Materials 24, 384–389 (2010)CrossRefGoogle Scholar
  40. 40.
    Stoycheva, T., Vallejos, S., Blackman, C., Moniz, S.J.A., Calderer, J., Correig, X.: Important considerations for effective gas sensors based on metal oxide nanoneedles films. Sensors and Actuators B: Chemica 161, 406–413 (2012)CrossRefGoogle Scholar
  41. 41.
    Meixner, H., Gerblinger, J., Lampe, U., Fleischer, M.: Thin-film gas sensors based on semiconducting metal oxides. Sensors and Actuators B: Chemical 23, 119–125 (1995)CrossRefGoogle Scholar
  42. 42.
    Tomchenko, A.A., Harmer, G.P., Marquis, B.T., Allen, J.W.: Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sensors and Actuators B: Chemical 93, 126–134 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Mason
    • 1
  • O. Korostynska
    • 1
  • A. I. Al-Shamma’a
    • 1
  1. 1.Built Environment and Sustainable Technologies (BEST) Research InstituteLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations