Monitoring Pollutants in Wastewater: Traditional Lab Based versus Modern Real-Time Approaches

Abstract

Clean water - the most natural and yet the most precious natural resource that mankind needs. Current quality assessment methods of water parameters are mainly laboratory based, require fresh supplies of chemicals, trained staff and are time consuming. The ever-growing demand for simple, real-time and reliable techniques for the detection of pollutants and contaminants in the environment has sparked the development of remote detection and monitoring systems which include application specific sensors, instrumentation and signal processing. Real-time water quality monitoring is essential for National and International Health and Safety, as it can significantly reduce the level of damage and also the cost to remedy the problem. This book chapter critically compares the capabilities of traditional lab based and modern in situ methods for real-time wastewater quality monitoring and suggests further developments in this area.

Keywords

water quality monitoring insitu analysis optical methods mass spectrometry lab on chip sensors electromagnetic waves microwave sensors solidstate sensors amperometric detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    European Council, Directive 2000/60/EC of the European Parliament and of the Council of establishing a framework for Community action in the field of water policy. OJ L 327, 1–73 (2000)Google Scholar
  2. 2.
    Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U., Wehrli, B.: The Challenge of Micropollutants in Aquatic Systems. Science 313, 1072–1077 (2006)CrossRefGoogle Scholar
  3. 3.
    Stuart, M., Lapworth, D., Crane, E., Hart, A.: Review of risk from potential emerging contaminants in UK groundwater. Science of the Total Environment 416, 1–21 (2012)CrossRefGoogle Scholar
  4. 4.
    Rodriguez-Mozaz, S., Lopez de Alda, M.J., Barceló, D.: Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. Journal of Chromatography A 1152, 97–115 (2007)CrossRefGoogle Scholar
  5. 5.
    Alder, L., Greulich, K., Kempe, G., Vieth, B.: Residue analysis of 500 high priority pesticides: better by GC-MS or LC-MS/MS? Mass Spectrometry Reviews 25, 838–865 (2006)CrossRefGoogle Scholar
  6. 6.
    Thomas, O., Théraulaz, F., Cerdà, V., Constant, D., Quevauviller, P.: Wastewater quality monitoring. TrAC Trends in Analytical Chemistry 16, 419–424 (1997)CrossRefGoogle Scholar
  7. 7.
    Heberer, T.: Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters 131, 5–17 (2002)CrossRefGoogle Scholar
  8. 8.
    Bourgeois, W., Burgess, J., Stuetz, R.: J. Chem. Techn. & Biotechnology 76, 337–348 (2001)CrossRefGoogle Scholar
  9. 9.
    Slater, C., Cleary, J., McGraw, C.M., Yerazunis, W.S., Lau, K.T., Diamond, D.: Autonomous field-deployable device for the measurement of phosphate in natural water, p. 67550L (2007)Google Scholar
  10. 10.
    Al-Dasoqi, N., Mason, A., Alkhaddar, R., Al-Shamma’a, A.: Use of Sensors in Wastewater Quality Monitoring - a Review of Available Technologies. In: World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, p. 354 (2011)Google Scholar
  11. 11.
    Gilbert, L., Jenkins, A.T.A., Browning, S., Hart, J.P.: Development of an amperometric, screen-printed, single-enzyme phosphate ion biosensor and its application to the analysis of biomedical and environmental samples. Sensors and Actuators B: Chemical 160, 1322–1327 (2011)CrossRefGoogle Scholar
  12. 12.
    Amine, A., Palleschi, G.: Phosphate, Nitrate, and Sulfate Biosensors. Analytical Letters 37, 1–19 (2004)CrossRefGoogle Scholar
  13. 13.
    Villalba, M.M., McKeegan, K.J., Vaughan, D.H., Cardosi, M.F., Davis, J.: Bioelectroanalytical determination of phosphate: A review. Journal of Molecular Catalysis B: Enzymatic 59, 1–8 (2009)CrossRefGoogle Scholar
  14. 14.
    Allan, I.J., Vrana, B., Greenwood, R., Mills, G.A., Knutsson, J., Holmberg, A., Guigues, N., Fouillac, A.-M., Laschi, S.: Strategic monitoring for the European Water Framework Directive. TrAC Trends in Analytical Chemistry 25, 704–715 (2006)CrossRefGoogle Scholar
  15. 15.
    Allan, I.J., Vrana, B., Greenwood, R., Mills, G.A., Roig, B., Gonzalez, C.: A “toolbox” for biological and chemical monitoring requirements for the European Union’s Water Framework Directive. Talanta 69, 302–322 (2006)CrossRefGoogle Scholar
  16. 16.
    Korostynska, O., Mason, A., Al-Shamma’a, A.I.: Monitoring of Nitrates and Phosphates in Wastewater: Current Technologies and Further Challenges. International Journal on Smart Sensing and Intelligent Systems 5, 149–176 (2012)Google Scholar
  17. 17.
    Sten O, E.: The phosphate sensor. Biosensors and Bioelectronics 13, 981–994 (1998)CrossRefGoogle Scholar
  18. 18.
    Almeida, M.G., Silveira, C.M., Moura, J.J.G.: Biosensing nitrite using the system nitrite redutase/Nafion/methyl viologen—A voltammetric study. Biosensors and Bioelectronics 22, 2485–2492 (2007)CrossRefGoogle Scholar
  19. 19.
    Rosen, R.: Mass spectrometry for monitoring micropollutants in water. Current Opinion in Biotechnology 18, 246–251 (2007)CrossRefGoogle Scholar
  20. 20.
    Chusaksri, S., Sutthivaiyakit, S., Sutthivaiyakit, P.: Confirmatory determination of organochlorine pesticides in surface waters using LC/APCI/tandem mass spectrometry open diamond. Analytical and Bioanalytical Chemistry 384, 1236–1245 (2006)CrossRefGoogle Scholar
  21. 21.
    Donna, L.D., Mazzotti, F., Sindona, G., Tagarelli, A.: Assay of rotenone in river water by high-throughput tandem mass spectrometry and multiple-reaction monitoring methodology. Rapid Communications in Mass Spectrometry 19, 1575–1577 (2005)CrossRefGoogle Scholar
  22. 22.
    Pozo, O., Sancho, J.V., Ibanez, M., Hernandez, F.: Potential of liquid chromatography/time-of-flight mass spectrometry for the determination of pesticides and transformation products in water. Analytical and Bioanalytical Chemistry 386, 987–997 (2006)CrossRefGoogle Scholar
  23. 23.
    Lacorte, S., Fernandez-Alba, A.: Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass Spectrometry Reviews 25, 866–880 (2006)CrossRefGoogle Scholar
  24. 24.
    Schermerhorn, P., Golden, P., Krynitsky, A.J., Leimkuehler, W.: Determination of 22 triazole compounds including parent fungicides and metabolites in apples, peaches, flour, and water by liquid chromatography/tandem mass spectrometry. Journal of AOAC International 88, 1491–1502 (2005)Google Scholar
  25. 25.
    Capitán-Vallvey, L.F., Palma, A.J.: Recent developments in handheld and portable optosensing—A review. Analytica Chimica Acta 696, 27–46 (2011)CrossRefGoogle Scholar
  26. 26.
    Lyons, W.B., Ewald, H., Flanagan, C., Lewis, E.: A multi-point optical fibre sensor for condition monitoring in process water systems based on pattern recognition. Measurement 34, 301–312 (2003)CrossRefGoogle Scholar
  27. 27.
    McCue, R.P., Walsh, J.E., Walsh, F., Regan, F.: Modular fibre optic sensor for the detection of hydrocarbons in water. Sensors and Actuators, B: Chemical 114, 438–444 (2006)CrossRefGoogle Scholar
  28. 28.
    Ahmad, A., Paschero, A., Moore, E.: Amperometric immunosensors for screening of polycyclic aromatic hydrocarbons in water. In: 16th Conference in the Biennial Sensors and Their Applications, Cork, Ireland, September 12-14 (2011)Google Scholar
  29. 29.
    Arshak, K., Korostynska, O.: Advanced materials and techniques for radiation dosimetry. Artech House (2006)Google Scholar
  30. 30.
    Zhuiykov, S., Marney, D., Kats, E., Kalantar-Zadeh, K.: Potentiometric solid-state sensor for DO measurement in water using sub-micron CuO.4Ru3.4O7+RuO2 sensing electrode. Sensors and Actuators B: Chemical 153, 312–320 (2011)CrossRefGoogle Scholar
  31. 31.
    Van der Star, W.R.L., Abma, W.R., Blommers, D., Mulder, J.-W., Tokutomi, T., Strous, M., Picioreanu, C., van Loosdrecht, M.C.M.: Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Research 41, 4149–4163 (2007)CrossRefGoogle Scholar
  32. 32.
    Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C.: An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances 28, 232–254 (2010)CrossRefGoogle Scholar
  33. 33.
    Devereux, R.: Environmental Monitoring and Assessment 116, 459–479 (2006)Google Scholar
  34. 34.
    Campbell, G.A., Mutharasan, R.: Biosensors and Bioelectronics 22, 78–85 (2006)CrossRefGoogle Scholar
  35. 35.
    Arora, K., Chand, S., Malhotra, B.D.: Analytica Chimica Acta 568 (2006)Google Scholar
  36. 36.
    Korostynska, O., Arshak, K., Velusamy, V., Arshak, A., Vaseashta, A.: Recent Advances in Point-of-Access Water Quality Monitoring. In: Vaseashta, A., Braman, E., Susmann, P. (eds.) Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism, pp. 261–268. Springer, Netherlands (2012)CrossRefGoogle Scholar
  37. 37.
    Ganjali, M.R., Norouzi, P., Ghomi, M., Salavati-Niasari, M.: Highly selective and sensitive monohydrogen phosphate membrane sensor based on molybdenum acetylacetonate. Analytica Chimica Acta 567, 196–201 (2006)CrossRefGoogle Scholar
  38. 38.
    Jianhua, T., Chao, B., Yang, L., Yin, B., Shanhong, X.: Design of a MEMS-Based Total Phosphorus Sensor with a Microdigestion System. In: 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), pp. 1–4 (2010)Google Scholar
  39. 39.
    Lee, J.-H., Lim, T.-S., Seo, Y., Bishop, P.L., Papautsky, I.: Needle-type dissolved oxygen microelectrode array sensors for in situ measurements. Sensors and Actuators B: Chemical 128, 179–185 (2007)CrossRefGoogle Scholar
  40. 40.
    Lee, W.H., Seo, Y., Bishop, P.L.: Characteristics of a cobalt-based phosphate microelectrode for in situ monitoring of phosphate and its biological application. Sensors and Actuators B: Chemical 137, 121–128 (2009)CrossRefGoogle Scholar
  41. 41.
    Xiao, D., Yuan, H.-Y., Li, J., Yu, R.-Q.: Surface-Modified Cobalt-Based Sensor as a Phosphate-Sensitive Electrode. Analytical Chemistry 67, 288–291 (1995)CrossRefGoogle Scholar
  42. 42.
    Moujahid, W., Eichelmann-Daly, P., Strutwolf, J., Ogurtsov, V.I., Herzog, G., Arrigan, D.W.M.: Microelectrochemical Systems on Silicon Chips for the Detection of Pollutants in Seawater. Electroanalysis 23, 147–155 (2011)CrossRefGoogle Scholar
  43. 43.
    Lee, W.H., Lee, J.H., Bishop, P.L., Papautsky, I.: Biological Application of Micro-Electro Mechanical Systems Microelectrode Array Sensors for Direct Measurement of Phosphate in the Enhanced Biological Phosphorous Removal Process. Water Environment Research 81, 748–754 (2009)CrossRefGoogle Scholar
  44. 44.
    Jang, A., Zou, Z., Lee, K.K., Ahn, C.H., Bishop, P.L.: State-of-the-art lab chip sensors for environmental water monitoring. Measurement Science and Technology 22, 032001 (2011)CrossRefGoogle Scholar
  45. 45.
    Gan, T.H., Pallav, P., Hutchins, D.A.: Non-contact ultrasonic quality measurements of food products. Journal of Food Engineering 77, 239–247 (2006)CrossRefGoogle Scholar
  46. 46.
    Chouhan, R., Kiranmayee, A., Panchariya, P., Bhanu Prasad, P.: Acoustic signature based discrimination of drinking water. Presented at the ICST 2012: 6th International Conference on Sensing Technology, Kolkata, India (2012)Google Scholar
  47. 47.
    Yunus, M.A.M., Mukhopadhyay, S., Punchihewa, A.: Application of independent component analysis for estimating nitrate contamination in natural water sources using planar electromagnetic sensor. In: 2011 Fifth International Conference on Sensing Technology (ICST), pp. 538–543 (2011)Google Scholar
  48. 48.
    Yunus, M.A.M., Mukhopadhyay, S.C.: Novel Planar Electromagnetic Sensors for Detection of Nitrates and Contamination in Natural Water Sources. IEEE Sensors Journal 11, 1440–1447 (2011)CrossRefGoogle Scholar
  49. 49.
    Al-Dasoqi, N., Mason, A., Alkhaddar, R., Shaw, A., Al-Shamma’a, A.: Real-time non-destructive microwave sensor for nutrient monitoring in wastewater treatment. In: 16th Conference in the Biennial Sensors and Their Applications, Cork, Ireland, September 12-14 (2011)Google Scholar
  50. 50.
    Kapilevich, B., Litvak, B.: Microwave sensor for accurate measurements of water solution concentrations. In: Asia-Pacific Microwave Conference, APMC 2007, pp. 1–4 (2007)Google Scholar
  51. 51.
    Boon, J.D., Brubaker, J.M.: Acoustic-microwave water level sensor comparisons in an estuarine environment. In: OCEANS 2008, pp. 1–5 (2008)Google Scholar
  52. 52.
    Jackson, B., Jayanthy, T.: A novel method for water impurity concentration using microstrip resonator sensor. In: Recent Advances in Space Technology Services and Climate Change (RSTSCC), pp. 376–379 (2010)Google Scholar
  53. 53.
    Bernou, C., Rebière, D., Pistré, J.: Microwave sensors: a new sensing principle. Application to humidity detection. Sensors and Actuators B: Chemical 68, 88–93 (2000)CrossRefGoogle Scholar
  54. 54.
    Nacke, T., Barthel, A., Pflieger, C., Pliquett, U., Beckmann, D., Goller, A.: Continuous process monitoring for biogas plants using microwave sensors. In: 2010 12th Biennial Baltic Electronics Conference (BEC), pp. 239–242 (2010)Google Scholar
  55. 55.
    Korostynska, O., Arshak, A., Creedon, P., Arshak, K., Wendling, L., Al-Shamma’a, A.I., O’Keeffe, S.: Glucose monitoring using electromagnetic waves and microsensor with interdigitated electrodes. In: IEEE Sensors Applications Symposium, SAS 2009, pp. 34–37 (2009)Google Scholar
  56. 56.
    Mason, A., Wylie, S., Thomas, A., Keele, H., Shaw, A., Al-Shamma’a, A.: HEPA Filter Material Load Detection Using a Microwave Cavity Sensor. International Journal on Smart Sensing and Intelligent Systems 3, 16 (2010)Google Scholar
  57. 57.
    Choi, J., Cho, J., Lee, Y., Yim, J., Kang, B., Oh, K., Jung, W., Kim, H., Cheon, C., Lee, H.: Microwave Detection of Metastasized Breast Cancer Cells in the Lymph Node; Potential Application for Sentinel Lymphadenectomy. Breast Cancer Research and Treatment 86, 107–115 (2004)CrossRefGoogle Scholar
  58. 58.
    Nyfors, E., Vainikainen, P.: Industrial microwave sensors. In: IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1009–1012 (1991)Google Scholar
  59. 59.
    Nyfors, E., Vainikainen, P.: Industrial microwave sensors. Artech House, Norwood (1989)Google Scholar
  60. 60.
    Varshney, P.K.: Multisensor data fusion. Electronics & Communications Engineering Journal 9, 245–253 (1997)CrossRefGoogle Scholar
  61. 61.
    O’Flynn, B., Regan, F., Lawlor, A., Wallace, J., Torres, J., O’Mathuna, C.: Experiences and recommendations in deploying a real-time, water quality monitoring system. Measurement Science and Technology 21, 124004 (2010)CrossRefGoogle Scholar
  62. 62.
    Regan, F., Lawlor, A., Flynn, B.O., Torres, J., Martinez-Catala, R., O’Mathuna, C., Wallace, J.: A demonstration of wireless sensing for long term monitoring of water quality. In: IEEE 34th Conference on Local Computer Networks, LCN 2009, pp. 819–825 (2009)Google Scholar
  63. 63.
    O’Flynn, B., Martinez-Catala, R., Harte, S., O’Mathuna, C., Geary, J., Slater, C., Regan, F., Diamond, D., Murphy, H.: SmartCoast: A Wireless Sensor Network for water quality monitoring. In: 32nd IEEE Conference on Local Computer Networks, LCN 2007, Dublin, Ireland, October 15-18, pp. 815–816 (2007)Google Scholar
  64. 64.
    Tschmelak, J., Proll, G., Riedt, J., Kaiser, J., Kraemmer, P., Bárzaga, L., Wilkinson, J.S., Hua, P., Hole, J.P., Nudd, R., Jackson, M., Abuknesha, R., Barceló, D., Rodriguez-Mozaz, S., López de Alda, M.J., Sacher, F., Stien, J., Slobodník, J., Oswald, P., Kozmenko, H., Korenková, E., Tóthová, L., Krascsenits, Z., Gauglitz, G.: Automated Water Analyser Computer Supported System (AWACSS): Part II: Intelligent, remote-controlled, cost-effective, on-line, water-monitoring measurement system. Biosensors and Bioelectronics 20, 1509–1519 (2005)CrossRefGoogle Scholar
  65. 65.
    Bourgeois, W., Burgess, J.E., Stuetz, R.M.: On-line monitoring of wastewater quality: a review. Journal of Chemical Technology & Biotechnology 76, 337–348 (2001)CrossRefGoogle Scholar
  66. 66.
    Qin, X., Gao, F., Chen, G.: Wastewater quality monitoring system using sensor fusion and machine learning techniques. Water Research 46, 1133–1144 (2012)CrossRefGoogle Scholar
  67. 67.
    Storey, M.V., van der Gaag, B., Burns, B.P.: Advances in on-line drinking water quality monitoring and early warning systems. Water Research 45, 741–747 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • O. Korostynska
    • 1
  • A. Mason
    • 1
  • A. I. Al-Shamma’a
    • 1
  1. 1.Built Environment and Sustainable Technologies (BEST) Research InstituteLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations