Open Source Technologies Involved in Constructing a Web-Based Football Information System

  • Pedro Rodrigues
  • António Belguinha
  • Carlos Gomes
  • Pedro Cardoso
  • Tiago Vilas
  • Renato Mestre
  • J. M. F. Rodrigues
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 206)


The current information systems and match analysis software associated to professional football output a huge amount of statistics. Many football professionals are particularly interested in real time information about the tactical plan occurring during the match, and the relations between that information and what was prepared in the training sessions. It is fundamental to have on the bench, and on-the-fly, the most relevant information each time they have to take a decision. In this paper, we present a set of open source technologies involved in building a multi-platform web based integrated football information system, supported in three main modules: user interfaces, databases, and the tactical plan detection and classification. We show that the selected technologies are suitable for those modules, allowing field occurrences to trigger meaningful information.


Football open source web technologies information system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armatas, V., Yiannakos, A., Sileloglou, P.: Relationship between time and goal scoring in soccer games: Analysis of three World Cups. Int. J. of Performance Analysis in Sport 7(2), 48–58 (2007)Google Scholar
  2. 2.
    Franks, I., Miller, G.: Eyewitness Testimony in Sport. J. of Sport Behaviour 9, 39–45 (1986)Google Scholar
  3. 3.
    Kizanaro, (accessed November 2012)
  4. 4.
    Tracab, (accessed November 2012)
  5. 5.
    Prozone, (accessed November 2012)
  6. 6.
    Amisco, (accessed November 2012)
  7. 7.
    Sportvu, (accessed November 2012)
  8. 8.
    Kim, H., Kwon, O., Li, K.: Spatial and Spatiotemporal Analysis of Soccer. In: Proc. 19th ACM SIGSPATIAL GIS 2011, Chicago, USA, November 1-4, pp. 385–388 (2011)Google Scholar
  9. 9.
    Leser, R., Baca, A., Ogris, G.: Local positioning systems in (game) sports. Sensors 11(10), 9778–9797 (2011)CrossRefGoogle Scholar
  10. 10.
    Peña, J.L., Touchette, H.: A Network Theory Analysis of Football Strategies, pp. 1–6 (June 28, 2012), arXiv:1206.6904v1[math.CO]Google Scholar
  11. 11.
    Duarte, R., Araújo, D., Folgado, H., Esteves, P., Marques, P., Davids, K.: Capturing complex, non-linear team behaviours during competitive football performance. J. Syst. Sci. Complex, 1–11 (2012)Google Scholar
  12. 12.
    Moura, F., Martins, L., Anido, R., Barros, R., Cunha, S.: Quantitative analysis of Brazilian football players’ organisation on the pitch. Sports Biomech. 11(1), 85–96 (2012)CrossRefGoogle Scholar
  13. 13.
    Pilgrim, M.: HTML5 - Up and Running. O’Reilly Media, Inc. (2010)Google Scholar
  14. 14.
    HTML5, (accessed November, 2012)
  15. 15.
    Django, (accessed November 2012)
  16. 16.
    Python, (accessed November 2012)
  17. 17.
    Kaplan-Moss, J., Holovaty, A.: The Definitive Guide to Django: Web Development done Right (Expert’s Voice in Web Development), 2nd edn. Apress (2009)Google Scholar
  18. 18.
    Oliphant, T.E.: Python for Scientific Computing. Computing in Science & Engineering 9(3), 10–20 (2007)CrossRefGoogle Scholar
  19. 19.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision in C++ with the OpenCV Library. O’Reilly (2012)Google Scholar
  20. 20.
    Powers, S.: HTML5 Media. O’Reilly (2011)Google Scholar
  21. 21.
    Pfeiffer, S.: The Definitive Guide to HTML5 Video. Apress (2010)Google Scholar
  22. 22.
    Casario, M., Elst, P., Brown, C., Wormser, N., Hanquez, C.: HTML5 Solutions - Essential Techniques for HTML5 Developers. Appress (2011)Google Scholar
  23. 23.
    Meyer, J.: HTML5 and JavaScript Projects. Apress (2011)Google Scholar
  24. 24.
    Schmitt, C., Simpson, K.: HTML5 Cookbook. O’Reilly (2012)Google Scholar
  25. 25. (accessed November 2012)Google Scholar
  26. 26.
    Balasubramaniam, R.: Data Security in Relational Database Management System. Int. J. of Computer Science and Security 6(4), 203–210 (2012)MathSciNetGoogle Scholar
  27. 27.
    Cattell, R.: Scalable SQL and NoSQL Data Stores. ACM SIGMOD Rec. 39(4), 12–27 (2011)CrossRefGoogle Scholar
  28. 28.
    MySQL, (accessed November 2012)
  29. 29.
    mongoDB, (accessed November 2012)
  30. 30.
    Borrie, A., Jonsson, G.K., Magnusson, M.S.: Temporal Pattern Analysis and its Applicability in Sport: An Explanation and Exemplar Data. J. of Sports Science 20(10), 845–852 (2002)CrossRefGoogle Scholar
  31. 31.
    OpenCV, (accessed November 2012)
  32. 32.
    Code: Blocks, (accessed November 2012)
  33. 33.
    OpenMP, (accessed November, 2012)
  34. 34.
    Dearden, A., Demiris, Y., Grau, O.: Tracking Football Player Movement from a Single Moving Camera Using Particle Filters. In: Proc. 3rd Euro. Conf. on Visual Media Production CVMP 2006, London, UK, pp. 29–37 (2006)Google Scholar
  35. 35.
    Rao, D., Patil, S., Babu, N., Muthukumar, V.: Implementation and Evaluation of Image Processing Algorithms on Reconfigurable Architecture using C-based Hardware Descriptive Languages. Int. J. of Theoretical and Applied Computer Sciences 1(1), 9–34 (2006)Google Scholar
  36. 36.
    ChiliProject, (accessed November 2012)
  37. 37.
    Git, (accessed November 2012)
  38. 38.
    Doxygen, (accessed November 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pedro Rodrigues
    • 1
  • António Belguinha
    • 1
  • Carlos Gomes
    • 1
  • Pedro Cardoso
    • 1
  • Tiago Vilas
    • 1
  • Renato Mestre
    • 2
  • J. M. F. Rodrigues
    • 1
    • 3
  1. 1.Institute of EngineeringUniversity of the AlgarveFaroPortugal
  2. 2.Inesting, S.A.FaroPortugal
  3. 3.Vision Laboratory, LARSySUniversity of the AlgarveFaroPortugal

Personalised recommendations