Multi-Agent System for Teaching Service Distribution with Coalition Formation

  • José Joaquim Moreira
  • Luís Paulo Reis
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 206)


In University Management, one of the recurring problems that each department has to solve, each year, is the Teaching Service Distribution (TSD) or Teaching Assignment Problem (TAP). The problem of TSD consist to assign teachers to courses classes - lectures, tutorials, practical or laboratory - taking into account these preferences and qualifications for teaching. This is a crucial stage, since it is almost imperative that the TSD is fully defined before the process of schedules generating. However, most institutions of higher education, don’t have a specific software tool to support the process of TSD. In this paper we propose a new approach for solving the TSD consisting on the formulation of the problem as a distributed scheduling problem with the formation with coalitions formation. The problem is solved in the context of a multi-agent system where the real agents are modeled by computational agents, with their interests, but may cooperate in alliance groups.


University management TSD TAP Scheduling Multi-agent systems Coalitions formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gunawan, A., Ng, K.M., Ong, H.L.: A Genetic Algorithm for the Teacher Assignment Problem for a University in Indonesia. Information and Management Sciences 19(1), 1–16 (2008)zbMATHGoogle Scholar
  2. 2.
    Wang, Y.Z.: An application of genetic algorithm methods for teacher assignment problems. Expert Systems with Applications, 295–302 (2002)Google Scholar
  3. 3.
    Reis, L.P., Oliveira, E.C.: A language for specifying complete timetabling problems. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 322–341. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    PATAT, Conferences: The International Series of Conferences on the Practice and Theory of Automated Timetabling (PATAT),
  5. 5.
    International timetabling competition,
  6. 6.
    Thompson, J., Dowland, K., et al.: General Cooling Schedules for a Simulated Annealing Based Timetabling System. In: Proceedings of the 1st International Conference on the Practice and Theory of Automated Timetabling (1995)Google Scholar
  7. 7.
    Wren, A.: Scheduling, Timetabling and Rostering — a special relationship? In: Proceedings of the 1st International Conference on the Practice and Theory of Automated Timetabling, pp. 474–495 (1995)Google Scholar
  8. 8.
    Queirós, F.H.: Construção automática de Horários de Aulas. Tese de Mestrado, Universidade Portucalense (1995)Google Scholar
  9. 9.
    Reis, L.P., Oliveira, E.C.: A Language for Specifying Complete Timetabling Problems. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, p. 322. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Gröbner, M., Wilke, P.: A General View on Timetabling Problems. In: 4th International Conference on the Practice and Theory of Automated Timetabling, PATAT 2002 (2002)Google Scholar
  11. 11.
    Chan, H.W.: School Timetabling Using Genetic Search. In: 2nd International Conference on the Practice and Theory of Automated Timetabling, PATAT 1997 (1997)Google Scholar
  12. 12.
    Fang, H.L.: Genetic Algorithms in Tametabling Problems. PhD Thesis, University of Edinburgh (1994)Google Scholar
  13. 13.
    Fernandes, C.: Infected Genes Evolutionary Algorithm for School Timetabling. In: WSES International Conference (2002)Google Scholar
  14. 14.
    Eley, M.: Ant Algorithms for the Exam Timetabling Problem. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 364–382. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Moreira, J.J.: A System for Automatic Construction of Exam Timetable Using Genetic Algorithms. Polytechnical Studies Review VI(9) (2008)Google Scholar
  16. 16.
    Moreira, P.M., Reis, L.P., De Sousa, A.A.: I-om: Intelligent optimization for computer graphics and visualization. In: Proceedings of the 5th Iberian Conference on Information Systems and Technologies, CISTI 2010 (2010)Google Scholar
  17. 17.
    Faria, B.M., Reis, L.P., Lau, N., Castillo, G.: Machine Learning algorithms applied to the classification of robotic soccer formations and opponent teams. In: IEEE Conference on Cybernetics and Intelligent Systems, CIS 2010, pp. 344–349 (2010)Google Scholar
  18. 18.
    Ramos, J.A., Reis, L.P., Pedrosa, D.: Solving Heterogeneous Fleet Multiple Depot Vehicle Scheduling Problem as an Asymmetric Traveling Salesman Problem. In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS (LNAI), vol. 7026, pp. 98–109. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Gunawan, A., Ng, K.M.: Solving the teacher assignment problem by two metaheuristics. International Journal of Information and Management Sciences 22, 73–86 (2011)MathSciNetGoogle Scholar
  20. 20.
    Ferreira, P.S., Karas, E.W., Palucoski, F.L., Ribeiro, A.A., Silva, A.L.: Aplicação deprogramação inteira na distribuição de encargos didáticos em instituições de ensino. Tendências em Matemática Aplicada e Computacional 12, 135–144 (2011)Google Scholar
  21. 21.
    Hultberg, T.H., Cardoso, D.M.: The teacher assignment problem: A special case of the fixed charge transportation problem. European Journal of Operational Research 101, 463–473 (1997)zbMATHCrossRefGoogle Scholar
  22. 22.
    Uney-Yuksektepe, F., Karabulut, I.: Mathematical programming approach to course-teaching assistant assignment problem. In: Proceedings of the 41st International Conference on Computers & Industrial Engineering, pp. 878–883 (2011)Google Scholar
  23. 23.
    Tilleti, P.I.: An operations research approach to the assignment of teachers to courses. Socio-Economic Planning Sciences 9, 101–104 (1975)CrossRefGoogle Scholar
  24. 24.
    Schniederjans, M.J., Kim, G.C.: A goal programming model to optimize departmental preference in course assignments. Computers & Operations Research 14, 87–96 (1987)CrossRefGoogle Scholar
  25. 25.
    Hmer, A., Mouhoub, M.: Teaching Assignment Problem Solver. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010, Part II. LNCS, vol. 6097, pp. 298–307. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Maria, L.: Teacher Assignment Program. Master of Computer Science, University of Colorado (2010)Google Scholar
  27. 27.
    Silva, D.C., Braga, R.A.M., Reis, L.P., Oliveira, E.: Designing a meta-model for a generic robotic agent system using Gaia methodology. Information Sciences 195, 190–210 (2012)CrossRefGoogle Scholar
  28. 28.
    Mota, L., Reis, L.P., Lau, N.: Multi-robot coordination using Setplays in the middle-size and simulation leagues. Mechatronics 21(2), 434–444 (2011)CrossRefGoogle Scholar
  29. 29.
    Pereira, A., Reis, L.P., Duarte, P.: EcoSimNet: A Multi-Agent System for Ecological Simulation and Optimization. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS (LNAI), vol. 5816, pp. 473–484. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Pereira, A., Reis, L.P., Duarte, P.: Ecosimnet: A framework for ecological simulations. In: Proceedings - 23rd European Conference on Modelling and Simulation, ECMS 2009, pp. 219–225 (2009)Google Scholar
  31. 31.
    Azevedo, J., Oliveira, M., Pacheco, P., Reis, L.P.: A Cooperative CiberMouse@RTSS08 Team. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS (LNAI), vol. 5816, pp. 251–262. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Mota, A., Castro, A.J.M., Reis, L.P.: Recovering from Airline Operational Problems with a Multi-Agent System: A Case Study. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS (LNAI), vol. 5816, pp. 461–472. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Gimenes, R., Silva, D.C., Reis, L.P., Oliveira, E.: Flight simulation environments applied to agent-based autonomous UAVS. In: ICEIS 2008 - 10th International Conference on Enterprise Information Systems, Proceedings SAIC, pp. 243–246 (2008)Google Scholar
  34. 34.
    Certo, J., Lau, N., Reis, L.P.: A generic strategic layer for collaborative networks. In: Camarinha-Matos, L., Afsarmanesh, H., Novais, P., Analide, C. (eds.) Establishing the Foundation of Collaborative Networks. IFIP, vol. 243, pp. 273–282. Springer, Boston (2007)CrossRefGoogle Scholar
  35. 35.
    Pereira, A., Duarte, P., Reis, L.P.: Ecolang - A communication language for simulations of complex ecological systems. In: Simulation in Wider Europe - 19th European Conference on Modelling and Simulation, ECMS 2005, pp. 493–500 (2005)Google Scholar
  36. 36.
    Reis, L.P., Lau, N.: COACH UNILANG - A Standard Language for Coaching a (Robo)Soccer Team. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 183–192. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  37. 37.
    Reis, L.P., Lau, N.: FC Portugal Team Description: RoboCup 2000 Simulation League Champion. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 29–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  38. 38.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing Science. New Series 220(4598), 671–680 (1983)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Glover, F.: Tabu Search. ORSA Journal of Computing 1, 190–206 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Resende, T.A., Feo, M.G.C.: Greedy Randomized Adaptive Search Procedure, GRASP (2007),
  41. 41.
    Holland, J.: Scheduling, Adaptation in Natural and Artificial Systems. The University of Michigan Press (1975)Google Scholar
  42. 42.
    Hansen, P., Mladenović, N.: Variable neighborhood search, vol. 24, pp. 1097–1100. Elsevier Science Ltd. (1997)Google Scholar
  43. 43.
    Goss, S.: Self-Organized Shortcuts in the Argentine Ant. Naturwissenschaften 76, 579–581 (1989)CrossRefGoogle Scholar
  44. 44.
    Colorni, A., Dorigo, M., Maniezzo, V.: Distributed Optimization by Ant Colonies. In: Proceedings of the First European Conference on Artificial Life, pp. 134–142. Elsevier Publishing, Amsterdam (1991)Google Scholar
  45. 45.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the Heuristic Determination of Minimun Cost Paths. IEEE Trans. Syst. Cybernetics 4(2), 100–107 (1968)CrossRefGoogle Scholar
  46. 46.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)Google Scholar
  47. 47.
    Rasmussen, T.K.: Improving Particle Swarm Optimization by hybridization of stochastic search heuristics and Self-Organized Criticality. Doctoral thesis, University of Aarhus, Department of Computer Science, Aarhus C, Denmark (2002)Google Scholar
  48. 48.
    Rahwan, T.: Algorithms for Coalition Formation in Multi-Agent Systems. PhD thesis, University of Southampton (2007)Google Scholar
  49. 49.
    Skiena, S.S.: The Algorithm Design Manual. Springer, New York (1998)Google Scholar
  50. 50.
    Sandholm, T.W., Larson, K., Andersson, M., Shehory, O., Tohme, F.: Coalition structure generation with worst case guarantees. Artificial Intelligence 111(1-2), 209–238 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.ISLA GaiaV. N. GaiaPortugal
  2. 2.Information Systems Dep.EEUM/DSI - School of Engineering of the University of MinhoGuimarãesPortugal
  3. 3.LIACC - Artificial Intelligence and Computer Science LaboratoryUniversity of PortoPortoPortugal

Personalised recommendations