Interpreted Systems Semantics for Process Algebra with Identity Annotations

  • Francien Dechesne
  • Mohammad Reza Mousavi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7758)


Process algebras have been developed as formalisms for specifying the behavioral aspects of protocols. Interpreted systems have been proposed as a semantic model for multi-agent communication. In this paper, we connect these two formalisms by defining an interpreted systems semantics for a generic process algebraic formalism. This allows us to translate and compare the vast body of knowledge and results for each of the two formalisms to the other and perform epistemic reasoning, e.g., using model-checking tools for interpreted systems, on process algebraic specifications. Based on our translation we formulate and prove some results about the interpreted systems generated by process algebraic specifications.


Multiagent System Global State Operational Semantic Indistinguishability Relation Epistemic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Birgisson, A., Ingólfsdóttir, A., Mousavi, M.: Decompositional Reasoning about the History of Parallel Processes. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 32–47. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Bhargava, M., Palamidessi, C.: Probabilistic Anonymity. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes. Cambridge University Press (2009)Google Scholar
  4. 4.
    van Benthem, J., Gerbrandy, J., Hoshi, T., Pacuit, E.: Merging frameworks for interaction. Journal of Philosophical Logic 38(5), 491–526 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Boureanu, I., Cohen, M., Lomuscio, A.: A Compilation Method for the Verification of Temporal-Epistemic Properties of Cryptographic Protocols. Journal of Applied Non-Classical Logics 19(4), 463–487 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chadha, R., Delaune, S., Kremer, S.: Epistemic Logic for the Applied Pi Calculus. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 182–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Chatzikokolakis, K., Knight, S., Panangaden, P.: Epistemic Strategies and Games on Concurrent Processes. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 153–166. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1, 65–75 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dechesne, F., Mousavi, M.R., Orzan, S.: Operational and Epistemic Approaches to Protocol Analysis: Bridging the Gap. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 226–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Dechesne, F., Mousavi, M.R., Orzan, S.: Operational and epistemic approaches to protocol analysis: bridging the gap. Technical Report CSR-07-15, Department of Computer Science, Eindhoven University of Technology (2007)Google Scholar
  11. 11.
    Dechesne, F., Wang, Y.: To know or not to know: epistemic approaches to security protocol verification. Synthese 177, 51–76 (2010)zbMATHCrossRefGoogle Scholar
  12. 12.
    van Eijk, R., de Boer, F., van der Hoek, W., Meyer, J.-J.C.: Operational Semantics for Agent Communication Languages. In: Dignum, F.P.M., Greaves, M. (eds.) Issues in Agent Communication. LNCS, vol. 1916, pp. 80–95. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    van Eijk, R.M., de Boer, F.S., van der Hoek, W., Meyer, J.-J.Ch.: Process Algebra for Agent Communication: A General Semantic Approach. In: Huget, M.-P. (ed.) Communication in Multiagent Systems. LNCS (LNAI), vol. 2650, pp. 113–128. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press (1995)Google Scholar
  15. 15.
    Halpern, J.Y., Moses, Y.: Knowledge and Common Knowledge in a distributed environment. In: Proceedings of the 3rd ACM Conference on Principles of Distributed Computing, pp. 50–61. ACM (1984); Reprinted in the Journal of the Association for Computing Machinery 37(3), 549–587 (1990)Google Scholar
  16. 16.
    Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. Journal of Computer Security, 483–514 (2005)Google Scholar
  17. 17.
    Halpern, J., Vardi, M.Y.: Reasoning about knowledge and time in asynchronous systems. In: Proceedings of STOC 1988, pp. 53–65. ACM Press (1988)Google Scholar
  18. 18.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32(1), 137–161 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Hoare, T.: Communicating Sequential Processes. Prentice-Hall (1985)Google Scholar
  20. 20.
    van der Hoek, W., van Hulst, M., Meyer, J.-J.Ch.: Towards an Epistemic Approach to Reasoning about Concurrent Programs. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1992. LNCS, vol. 666, pp. 261–287. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  21. 21.
    Hoshi, T.: Merging DEL and ETL. J. of Logic, Lang. and Inf. 19, 413–430 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: A modular approach. Journal of Computer Security 12(1), 3–36 (2004)Google Scholar
  23. 23.
    van Hulst, M., Meyer, J.-J.Ch.: An epistemic proof system for parallel processes: extended abstract. In: Proceeding of TARK 1994, pp. 243–254. ACM Press (1994)Google Scholar
  24. 24.
    Katz, S., Taubenfeld, G.: What Processes Know: Definitions and Proof Methods. In: Proceedings of PODC 1986, pp. 249–262. ACM Press (1986)Google Scholar
  25. 25.
    Kramer, S., Palamidessi, C., Segala, R., Turrini, A., Braun, C.: A quantitative doxastic logic for probabilistic processes and applications to information-hiding. The Journal of Applied Non-Classical Logic 19(4), 489–516 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lomuscio, A., Ryan, M.: Ideal agents sharing (some!) knowledge. In: Proceedings of ECAI 1998, pp. 557–561. John Wiley and Sons (1998)Google Scholar
  27. 27.
    Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A Model Checker for the Verification of Multi-Agent Systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining cryptographers. In: Proceedings of CSFW 2004, pp. 280–291. IEEE (2004)Google Scholar
  29. 29.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  30. 30.
    Parikh, R., Ramanujam, R.: Distributed Processes and the Logic of Knowledge. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 256–268. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  31. 31.
    Park, D.M.R.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  32. 32.
    Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60, 17–139 (2004)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Raimondi, F., Lomuscio, A.: A tool for specification and verification of epistemic properties in interpreted systems. Electronic Notes in Theoretical Computer Science 85(4) (2004)Google Scholar
  34. 34.
    Richards, S., Sadrzadeh, M.: Aximo: Automated axiomatic reasoning for information update. In: Proceedings of M4M5 2007. ENTCS, vol. 231, pp. 211–225. Elsevier (2009)Google Scholar
  35. 35.
    Schneider, S., Sidiropoulos, A.: CSP and Anonymity. In: Martella, G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  36. 36.
    Toninho, B., Caires, L.: A spatial-epistemic logic for reasoning about security protocols. In: Proceedings of SecCo 2010. EPTCS, vol. 51, pp. 1–15 (2010)Google Scholar
  37. 37.
    de Vries, W., de Boer, F.S., van der Hoek, W., Meyer, J.-J.Ch.: A Truly Concurrent Model for Interacting Agents. In: Yuan, S.-T., Yokoo, M. (eds.) PRIMA 2001. LNCS (LNAI), vol. 2132, pp. 16–30. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Francien Dechesne
    • 1
  • Mohammad Reza Mousavi
    • 2
  1. 1.Philosophy Section, Faculty of Technology, Policy and ManagementDelft University of TechnologyThe Netherlands
  2. 2.Department of Computer ScienceEindhoven University of TechnologyThe Netherlands

Personalised recommendations