Advertisement

Topic Models Can Improve Domain Term Extraction

  • Elena Bolshakova
  • Natalia Loukachevitch
  • Michael Nokel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7814)

Abstract

The paper describes the results of an experimental study of topic models applied to the task of single-word term extraction. The experiments encompass several probabilistic and non-probabilistic topic models and demonstrate that topic information improves the quality of term extraction, as well as NMF with KL-divergence minimization is the best among the models under study.

Keywords

Topic Models Clustering Single-Word Term Extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Loukachevitch, N.: Automatic Term Recognition Needs Multiple Evidence. In: 8th International Conference on LREC (2012)Google Scholar
  2. 2.
    Stevens, K., Kegelmeyer, P., Andrzejewski, D., Buttler, D.: Exploring Topic Coherence over many models and many topics. In: EMNLP-CoNLL, pp. 952–961 (2012)Google Scholar
  3. 3.
    He, Q., Chang, K., Lim, E., Banerjee, A.: Keep It Smile with Time: A Reexamination of Probabilistic Topic Detection Models. IEEE Transactions Pattern Analysis and Machine Intelligence 32(10), 1795–1808 (2010)CrossRefGoogle Scholar
  4. 4.
    Lee, D.D., Seung, H.S.: Algorithms for Non-negative Matrix Factorization. In: NIPS, pp. 556–562. MIT Press (2000)Google Scholar
  5. 5.
    Blei, D., Ng, A., Jordan, M.: Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993–1022 (2003)MATHGoogle Scholar
  6. 6.
    Phan, X.-H., Nguyen, C.-T.: GibbsLDA++: A C/C++ implementation of latent Dirichlet allocation (LDA) (2007)Google Scholar
  7. 7.
    Navigli, R., Velardi, P.: Semantic Interpretation of Terminological Strings. In: 6th Int. Conf. on Terminology and Knowledge Engineering, pp. 95–100. Springer (2002)Google Scholar
  8. 8.
    Blei, D., Lafferty, J.: Topic Models. In: Text Mining: Classification, Clustering and Applications, pp. 71–89. Chapman & Hall (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elena Bolshakova
    • 1
  • Natalia Loukachevitch
    • 2
  • Michael Nokel
    • 1
  1. 1.Moscow State UniversityRussian Federation
  2. 2.Research Computing CenterMoscow State UniversityRussian Federation

Personalised recommendations