Query Suggestions for Textual Problem Solution Repositories

  • Deepak P.
  • Sutanu Chakraborti
  • Deepak Khemani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7814)


Textual problem-solution repositories are available today in various forms, most commonly as problem-solution pairs from community question answering systems. Modern search engines that operate on the web can suggest possible completions in real-time for users as they type in queries. We study the problem of generating intelligent query suggestions for users of customized search systems that enable querying over problem-solution repositories. Due to the small scale and specialized nature of such systems, we often do not have the luxury of depending on query logs for finding query suggestions. We propose a retrieval model for generating query suggestions for search on a set of problem solution pairs. We harness the problem solution partition inherent in such repositories to improve upon traditional query suggestion mechanisms designed for systems that search over general textual corpora. We evaluate our technique over real problem-solution datasets and illustrate that our technique provides large and statistically significant improvements over the state-of-the-art technique in query suggestion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feuer, A., Savev, S., Aslam, J.A.: Evaluation of phrasal query suggestions. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, CIKM, pp. 841–848 (2007)Google Scholar
  2. 2.
    Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., Li, H.: Context-aware query suggestion by mining click-through and session data. In: KDD, pp. 875–883 (2008)Google Scholar
  3. 3.
    Ma, H., Yang, H., King, I., Lyu, M.R.: Learning latent semantic relations from clickthrough data for query suggestion. In: CIKM, pp. 709–718 (2008)Google Scholar
  4. 4.
    Song, Y., Wei He, L.: Optimal rare query suggestion with implicit user feedback. In: WWW, pp. 901–910 (2010)Google Scholar
  5. 5.
    Bhatia, S., Majumdar, D., Mitra, P.: Query suggestions in the absence of query logs. In: SIGIR, pp. 795–804 (2011)Google Scholar
  6. 6.
    Deepak, P., Visweswariah, K., Wiratunga, N., Sani, S.: Two-part segmentation of text documents. In: CIKM (2012)Google Scholar
  7. 7.
    Xue, X., Jeon, J., Croft, W.B.: Retrieval models for question and answer archives. In: SIGIR, pp. 475–482 (2008)Google Scholar
  8. 8.
    Fonseca, B.M., Golgher, P.B., Pôssas, B., Ribeiro-Neto, B.A., Ziviani, N.: Concept-based interactive query expansion. In: CIKM, pp. 696–703 (2005)Google Scholar
  9. 9.
    Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query substitutions. In: WWW, pp. 387–396 (2006)Google Scholar
  10. 10.
    Boldi, P., Bonchi, F., Castillo, C., Donato, D., Vigna, S.: Query suggestions using query-flow graphs. In: Proceedings of the 2009 Workshop on Web Search Click Data, WSCD 2009, pp. 56–63 (2009)Google Scholar
  11. 11.
    Cucerzan, S., White, R.W.: Query suggestion based on user landing pages. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pp. 875–876 (2007)Google Scholar
  12. 12.
    Bast, H., Weber, I.: Type less, find more: fast autocompletion search with a succinct index. In: SIGIR, pp. 364–371 (2006)Google Scholar
  13. 13.
    Brown, P.F., Cocke, J., Pietra, S.A.D., Pietra, V.J.D., Jelinek, F., Lafferty, J.D., Mercer, R.L., Roossin, P.S.: A statistical approach to machine translation. Comput. Linguist. 16(2), 79–85 (1990)Google Scholar
  14. 14.
    Jeon, J., Croft, W.B., Lee, J.H.: Finding similar questions in large question and answer archives. In: CIKM, pp. 84–90 (2005)Google Scholar
  15. 15.
    Zhou, T.C., Lin, C.Y., King, I., Lyu, M.R., Song, Y.I., Cao, Y.: Learning to suggest questions in online forums. In: AAAI (2011)Google Scholar
  16. 16.
    Zhou, G., Cai, L., Zhao, J., Liu, K.: Phrase-based translation model for question retrieval in community question answer archives. In: ACL, pp. 653–662 (2011)Google Scholar
  17. 17.
    Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Probabilistic query expansion using query logs. In: WWW, pp. 325–332 (2002)Google Scholar
  18. 18.
    Raghunandan, M.A., Wiratunga, N., Chakraborti, S., Massie, S., Khemani, D.: Evaluation Measures for TCBR Systems. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 444–458. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Massie, S., Wiratunga, N., Craw, S., Donati, A., Vicari, E.: From Anomaly Reports to Cases. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 359–373. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Liu, X., Croft, W.B.: Statistical language modeling for information retrieval. ARIST 39(1), 1–31 (2005)Google Scholar
  21. 21.
    Smucker, M.D., Allan, J., Carterette, B.: A comparison of statistical significance tests for information retrieval evaluation. In: CIKM, pp. 623–632 (2007)Google Scholar
  22. 22.
    Deepak, P., Chakraborti, S., Khemani, D.: More of Better: On trade-offs in compacting textual problem solution repositories. In: CIKM, pp. 2321–2324 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Deepak P.
    • 1
  • Sutanu Chakraborti
    • 2
  • Deepak Khemani
    • 2
  1. 1.IBM Research - IndiaBangaloreIndia
  2. 2.Indian Institute of Technology MadrasIndia

Personalised recommendations