Example Based Entity Search in the Web of Data

  • Marc Bron
  • Krisztian Balog
  • Maarten de Rijke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7814)

Abstract

The scale of today’s Web of Data motivates the use of keyword search-based approaches to entity-oriented search tasks in addition to traditional structure-based approaches, which require users to have knowledge of the underlying schema. We propose an alternative structure-based approach that makes use of example entities and compare its effectiveness with a text-based approach in the context of an entity list completion task. We find that both the text and structure-based approaches are effective in retrieving relevant entities, but that they find different sets of entities. Additionally, we find that the performance of the structure-based approach is dependent on the quality and number of example entities given. We experiment with a number of hybrid techniques that balance between the two approaches and find that a method that uses the example entities to determine the weights of approaches in the combination on a per query basis is most effective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balog, K., Bron, M., de Rijke, M., Weerkamp, W.: Combining Term-Based and Category-Based Representations for Entity Search. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 265–272. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Balog, K., Meij, E., de Rijke, M.: Entity search: building bridges between two worlds. In: Semantic Search Workshop 2010, pp. 1–5 (2010)Google Scholar
  3. 3.
    Balog, K., Serdyukov, P., de Vries, A.: Overview of the TREC 2010 Entity Track. In: TREC 2010 (2010)Google Scholar
  4. 4.
    Balog, K., Ciglan, M., Neumayer, R., Wei, W., Nørvåg, K.: NTNU at SemSearch 2011. In: Semantic Search Workshop 2011 (2011)Google Scholar
  5. 5.
    Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific American 284(5), 28–37 (2001)CrossRefGoogle Scholar
  6. 6.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  7. 7.
    Blanco, R., Halpin, H., Herzig, D., Mika, P., Pound, J., Thompson, H.: Entity search evaluation over structured web data. In: Workshop on Entity-Oriented Search 2011 (2011)Google Scholar
  8. 8.
    Blanco, R., Mika, P., Vigna, S.: Effective and Efficient Entity Search in RDF Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 83–97. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Bron, M., Balog, K., de Rijke, M.: Ranking related entities: Components and analyses. In: CIKM 2010 (2010)Google Scholar
  10. 10.
    Bron, M., He, J., Hofmann, K., Meij, E., de Rijke, M., Tsagkias, M., Weerkamp, W.: The University of Amsterdam at TREC 2010: Session, entity and relevance Feedback. In: TREC 2010 (2011)Google Scholar
  11. 11.
    Ciglan, M., Nørvåg, K., Hluchỳ, L.: The SemSets model for ad-hoc semantic list search. In: WWW 2012, pp. 131–140 (2012)Google Scholar
  12. 12.
    Dalton, J., Huston, S.: Semantic entity retrieval using web queries over structured RDF data. In: Semantic Search Workshop 2010 (2010)Google Scholar
  13. 13.
    Dalvi, B., Callan, J., Cohen, W.: Entity list completion using set expansion techniques. In: TREC 2010 (2011)Google Scholar
  14. 14.
    Davies, J., Weeks, R.: QuizRDF: search technology for the semantic web. In: HICSS 2004 (2004)Google Scholar
  15. 15.
    Demartini, G., Iofciu, T., de Vries, A.: Overview of the INEX 2009 entity ranking track. Focused Retrieval and Evaluation, 254–264 (2010)Google Scholar
  16. 16.
    Elbassuoni, S., Ramanath, M., Schenkel, R., Sydow, M., Weikum, G.: Language-model-based ranking for queries on rdf-graphs. In: CIKM 2009, pp. 977–986 (2009)Google Scholar
  17. 17.
    Fang, Y., Si, L., Somasundaram, N., Al-Ansari, S., Yu, Z., Xian, Y.: Purdue at TREC 2010 Entity Track: a Probabilistic Framework for Matching Types between Candidate and Target Entities. In: TREC 2010 (2011)Google Scholar
  18. 18.
    Fox, E., Shaw, J.: Combination of multiple searches. In: TREC 1994, p. 243 (1994)Google Scholar
  19. 19.
    Gao, J., Wu, Q., Burges, C., Svore, K., Su, Y., Khan, N., Shah, S., Zhou, H.: Model adaptation via model interpolation and boosting for web search ranking. In: EMNLP 2009, pp. 505–513 (2009)Google Scholar
  20. 20.
    He, J., de Rijke, M., Sevenster, M., van Ommering, R., Qian, Y.: Generating links to background knowledge: A case study using narrative radiology reports. In: CIKM 2011 (2011)Google Scholar
  21. 21.
    Liu, X., Fang, H.: A study of entity search in semantic search workshop. In: Semantic Search Workshop 2010 (2010)Google Scholar
  22. 22.
    Meij, E., Weerkamp, W., de Rijke, M.: Adding semantics to microblog posts. In: WSDM 2012, pp. 563–572. ACM (2012)Google Scholar
  23. 23.
    Neumayer, R., Balog, K., Nørvåg, K.: On the modeling of entities for ad-hoc entity search in the web of data. In: Advances in Information Retrieval, pp. 133–145 (2012)Google Scholar
  24. 24.
    Pérez-Agüera, J., Arroyo, J., Greenberg, J., Iglesias, J., Fresno, V.: Using BM25F for semantic search. In: Semantic Search Workshop 2010 (2010)Google Scholar
  25. 25.
    Pound, J., Mika, P., Zaragoza, H.: Ad-hoc Object Ranking in the Web of Data. In: WWW 2010 (2010)Google Scholar
  26. 26.
    Rocha, C., Schwabe, D., Aragao, M.: A hybrid approach for searching in the semantic web. In: WWW 2004, pp. 374–383 (2004)Google Scholar
  27. 27.
    Sheldon, D., Shokouhi, M., Szummer, M., Craswell, N.: LambdaMerge: merging the results of query reformulations. In: WSDM 2011, pp. 795–804 (2011)Google Scholar
  28. 28.
    Tonon, A., Demartini, G., Cudré-Mauroux, P.: Combining inverted indices and structured search for ad-hoc object retrieval. In: SIGIR 2012, pp. 125–134 (2012)Google Scholar
  29. 29.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In: ICDE 2009, pp. 405–416 (2009)Google Scholar
  30. 30.
    Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker, S.: Sig. ma: live views on the web of data. In: Web Semantics: Science, Services and Agents on the World Wide Web (2010)Google Scholar
  31. 31.
    Vercoustre, A., Pehcevski, J., Naumovski, V.: Topic difficulty prediction in entity ranking. In: Advances in Focused Retrieval, pp. 280–291 (2009)Google Scholar
  32. 32.
    Zhai, C.: Statistical language models for information retrieval a critical review. Foundations and Trends in Information Retrieval 2(3), 137–213 (2008)CrossRefGoogle Scholar
  33. 33.
    Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: Adapting Keyword Query to Semantic Search. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 694–707. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marc Bron
    • 1
  • Krisztian Balog
    • 2
  • Maarten de Rijke
    • 1
  1. 1.ISLAUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.University of StavangerStavangerNorway

Personalised recommendations