From Image to Personalized Cardiac Simulation: Encoding Anatomical Structures into a Model-Based Segmentation Framework

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7746)


Whole organ scale patient specific biophysical simulations contribute to the understanding, diagnosis and treatment of complex diseases such as cardiac arrhythmia. However, many individual steps are required to bridge the gap from an anatomical scan to a personalized biophysical model. In biophysical modeling, differential equations are solved on spatial domains represented by volumetric meshes of high resolution and in model-based segmentation, surface or volume meshes represent the patient’s geometry. We simplify the personalization process by representing the simulation mesh and additional relevant structures relative to the segmentation mesh. Using a surface correspondence preserving model-based segmentation algorithm, we facilitate the integration of anatomical information into biophysical models avoiding a complex processing pipeline. In a simulation study, we observe surface correspondence of up to 1.6 mm accuracy for the four heart chambers. We compare isotropic and anisotropic atrial excitation propagation in a personalized simulation.


model-based segmentation electrophysiological structures biophysical modeling and simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burdumy, M., Luik, A., Neher, P., Hanna, R., Krueger, M.W., Schilling, C., Barschdorf, H., Lorenz, C., Seemann, G., Schmitt, C., Dössel, O., Weber, F.M.: Comparing measured and simulated wave directions in the left atrium - a workflow for model personalization and validation. Biomedical Engineering (2012)Google Scholar
  2. 2.
    Camara, O., Pashaei, A., Sebastian, R., Frangi, A.F.: Personalization of Fast Conduction Purkinje System in Eikonal-Based Electrophysiological Models with Optical Mapping Data. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM-CESC 2010. LNCS, vol. 6364, pp. 281–290. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Christie, G.R., Nielsen, P.M., Blackett, S.A., Bradley, C.P., Hunter, P.J.: FieldML: concepts and implementation. Philosophical Transactions of the Royal Society A 367(1895), 1869–1884 (2009)CrossRefGoogle Scholar
  4. 4.
    Dux-Santoy, L., Sebastian, R., Felix-Rodriguez, J., Ferrero, J.M., Saiz, J.: Interaction of specialized cardiac conduction system with antiarrhythmic drugs: A simulation study. IEEE Transactions on Biomedical E 58(12), 3475–3478 (2011)CrossRefGoogle Scholar
  5. 5.
    Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M.J., Vembar, M., Olszewski, M.E., Subramanyan, K., Lavi, G., Weese, J.: Automatic model-based segmentation of the heart in CT images. IEEE Transactions on Medical Imaging 27(9), 1189–1201 (2008)CrossRefGoogle Scholar
  6. 6.
    Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomechanics and Modeling in Mechanobiology 2, 139–155 (2004)CrossRefGoogle Scholar
  7. 7.
    Hoogendoorn, C., Pashaei, A., Sebastian, R., Sukno, F.M., Cámara, O., Frangi, A.F.: Sensitivity Analysis of Mesh Warping and Subsampling Strategies for Generating Large Scale Electrophysiological Simulation Data. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 418–426. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Kaus, M.R., Pekar, V., Lorenz, C., Truyen, R., Lobregt, S., Weese, J.: Automated 3-d PDM construction from segmented images using deformable models. IEEE Transactions on Medical Imaging 22(8), 1005–1013 (2003)CrossRefGoogle Scholar
  9. 9.
    Krueger, M.W., Schmidt, V., Tobón, C., Weber, F.M., Lorenz, C., Keller, D.U.J., Barschdorf, H., Burdumy, M., Neher, P., Plank, G., Rhode, K., Seemann, G., Sanchez-Quintana, D., Saiz, J., Razavi, R., Dössel, O.: Modeling Atrial Fiber Orientation in Patient-Specific Geometries: A Semi-automatic Rule-Based Approach. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 223–232. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Lamata, P., Niederer, S., Nordsletten, D., Barber, D.C., Roy, I., Hose, D.R., Smith, N.: An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Medical Image Analysis 15(6), 801–813 (2011)CrossRefGoogle Scholar
  11. 11.
    Neher, P., Barschdorf, H., Dries, S., Weber, F.M., Krueger, M.W., Dössel, O., Lorenz, C.: Automatic Segmentation of Cardiac CTs - Personalized Atrial Models Augmented with Electrophysiological Structures. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 80–87. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Peyrat, J.M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E.R., Ayache, N.: A computational framework for the statistical analysis of cardiac diffusion tensors: Application to a small database of canine hearts. IEEE Transactions on Medical Imaging 26(10), 1–15 (2007)CrossRefGoogle Scholar
  13. 13.
    Sakamoto, S., Nitta, T., Ishii, Y., Miyagi, Y., Ohmori, H., Shimizu, K.: Interatrial electrical connections: The precise location and preferential conduction. Journal of Cardiovascular Electrophysiology 16(10), 1077–1086 (2005)CrossRefGoogle Scholar
  14. 14.
    Schulte, R.F., Sands, G.B., Sachse, F.B., Dössel, O., Pullan, A.J.: Creation of a human heart model and its customisation using ultrasound images. Biomedical Engineering 46, 26–28 (2001)CrossRefGoogle Scholar
  15. 15.
    Sebastian, R., Zimmerman, V., Romero, D., Frangi, A.F.: Construction of a computational anatomical model of the peripheral cardiac conduction system. IEEE Transactions on Biomedical En. 58, 3479–3482 (2011)CrossRefGoogle Scholar
  16. 16.
    Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulation. IEEE Transactions on Medical Imaging 25, 612–625 (2006)CrossRefGoogle Scholar
  17. 17.
    Sermesant, M., Konukog̃lu, E., Delingette, H., Coudière, Y., Chinchapatnam, P., Rhode, K.S., Razavi, R., Ayache, N.: An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology. In: Sachse, F.B., Seemann, G. (eds.) FIHM 2007. LNCS, vol. 4466, pp. 160–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Smith, N., de Vecchi, A., McCormick, M., Nordsletten, D., Camara, O., Frangi, A.F., Delingette, H., Sermesant, M., Relan, J., Ayache, N., Krueger, M.W., Schulze, W.H.W., Hose, R., Valverde, I., Beerbaum, P., Staicu, C., Siebes, M., Spaan, J., Weese, P.H.J., Chapelle, H.L.D., Rezavi, R.: euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3), 349–364 (2011)CrossRefGoogle Scholar
  19. 19.
    Streeter, D., Spontnitz, H., Patel, D., Ross, J., Sonnenblick, E.: Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research 24, 339–347 (1969)CrossRefGoogle Scholar
  20. 20.
    Waechter, I., Kneser, R., Korosoglou, G., Peters, J., Bakker, N.H., van der Boomen, R., Weese, J.: Patient Specific Models for Planning and Guidance of Minimally Invasive Aortic Valve Implantation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 526–533. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3d cardiac CT volumes using marginal space learning and steerable features. IEEE Transactions on Medical Imaging 27(11), 1668–1681 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Philips Research HamburgGermany
  2. 2.Institute of Biomedical EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations