Application of an Island Model Genetic Algorithm for a Multi-track Music Segmentation Problem

  • Brigitte Rafael
  • Michael Affenzeller
  • Stefan Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7834)


Genetic algorithms have been introduced to the field of media segmentation including image, video, and also music segmentation since segmentation problems usually have complex search spaces. Music segmentation can give insight into the structure of a music composition so it is an important task in music information retrieval (MIR). Past approaches have applied genetic algorithms to achieve the segmentation of a single music track. However, music compositions usually contain multiple tracks so single track segmentations might miss important global structure information. This paper focuses on the introduction of an island model genetic algorithm to achieve single track segmentations with respect to the global structure of the composition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borovska, P., Lazarova, M.: Migration policies for island genetic models on multicomputer platform. In: Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 143–148 (2007)Google Scholar
  2. 2.
    Chen, Y.-W., Nakao, Z., Fang, X., Tamura, S.: A parallel genetic algorithm for image restoration. In: 13th International Conference on Pattern Recognition (ICPR 1996), vol. 4, p. 694 (1996)Google Scholar
  3. 3.
    Falahiazar, L., Teshnehlab, M.: Parallel genetic algorithm based on a new migration strategy. In: Recent Advances in Computing and Software Systems (RACSS), pp. 37–41 (2012)Google Scholar
  4. 4.
    Grilo, C., Cardoso, A.: Musical Pattern Extraction Using Genetic Algorithms. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 114–123. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Madsen, S.T., Widmer, G.: Evolutionary Search for Musical Parallelism. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 488–497. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Orio, N.: Music Retrieval: A Tutorial and Review. Now Publishers Inc. (2006)Google Scholar
  7. 7.
    Rafael, B., Oertl, S.: Mtssm - a framework for multi-track segmentation of symbolic music. World Academy of Science, Engineering and Technology 61, 410–416 (2010)Google Scholar
  8. 8.
    Rafael, B., Oertl, S., Affenzeller, M., Wagner, S.: Using Heuristic Optimization for Segmentation of Symbolic Music. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 641–648. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Rafael, B., Oertl, S., Affenzeller, M., Wagner, S.: An adaption of the schema theorem to various crossover and mutation operators for a music segmentation problem. In: Genetic and Evolutionary Computation Conference, GECCO 2012, Philadelphia, USA, pp. 469–476 (2012)Google Scholar
  10. 10.
    Rafael, B., Oertl, S., Affenzeller, M., Wagner, S.: Optimization of Parameter Settings for Genetic Algorithms in Music Segmentation. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011, Part I. LNCS, vol. 6927, pp. 240–247. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Vonolfen, S., Affenzeller, M., Beham, A., Wagner, S.: Solving large-scale vehicle routing problem instances using an island-model offspring selection genetic algorithm. In: Proceedings of the IEEE 3rd International Symposium on Logistics and Industrial Informatics (Lindi 2011), pp. 27–31 (2011)Google Scholar
  12. 12.
    Wagner, S.: Heuristic Optimization Software Systems - Modeling of Heuristic Optimization Algorithms in the HeuristicLab Software Environment. Ph.D. thesis, Institute for Formal Models and Verification, Johannes Kepler University Linz (2009)Google Scholar
  13. 13.
    Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: On separability, population size and convergence. Journal of Computing and Information Technology 7, 33–47 (1998)Google Scholar
  14. 14.
    Zhu, Z.Y., Leung, K.S.: Asynchronous self-adjustable island genetic algorithm for multi-objective optimization problems. In: Proceedings of the 2002 World on Congress on Computational Intelligence, WCCI, pp. 837–842 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Brigitte Rafael
    • 1
  • Michael Affenzeller
    • 1
  • Stefan Wagner
    • 1
  1. 1.School of Informatics, Communications and Media Heuristic and Evolutionary Algorithms LaboratoryUniversity of Applied Sciences Upper AustriaHagenbergAustria

Personalised recommendations