Advertisement

Targeting Distributed Systems in FastFlow

  • Marco Aldinucci
  • Sonia Campa
  • Marco Danelutto
  • Peter Kilpatrick
  • Massimo Torquati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7640)

Abstract

FastFlow is a structured parallel programming framework targeting shared memory multi-core architectures. In this paper we introduce a FastFlow extension aimed at supporting also a network of multi-core workstations. The extension supports the execution of FastFlow programs by coordinating–in a structured way–the fine grain parallel activities running on a single workstation. We discuss the design and the implementation of this extension presenting preliminary experimental results validating it on state-of-the-art networked multi-core nodes.

Keywords

structured parallel programming multi-core fine grain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel computing landscape. Comm. of the ACM 52(10), 56–67 (2009)CrossRefGoogle Scholar
  2. 2.
    Park, I., Voss, M.J., Kim, S.W., Eigenmann, R.: Parallel programming environment for OpenMP. Scientific Programming 9, 143–161 (2001)Google Scholar
  3. 3.
    Pacheco, P.S.: Parallel programming with MPI. Morgan Kaufmann Publishers Inc., San Francisco (1996)Google Scholar
  4. 4.
    Cappello, F., Etiemble, D.: Mpi versus mpi+openmp on ibm sp for the nas benchmarks. In: Proc. of the 2000 ACM/IEEE Conference on Supercomputing (CDROM), Supercomputing 2000. IEEE Computer Society (2000)Google Scholar
  5. 5.
    Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel programming. Parallel Computing 30(3), 389–406 (2004)CrossRefGoogle Scholar
  6. 6.
    González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: High-level structured parallel programming enablers. Software: Practice and Experience 40(12), 1135–1160 (2010)CrossRefGoogle Scholar
  7. 7.
    Matsuzaki, K., Iwasaki, H., Emoto, K., Hu, Z.: A library of constructive skeletons for sequential style of parallel programming. In: Proc. of the 1st Inter. Conference on Scalable Information Systems, InfoScale 2006. ACM, New York (2006)Google Scholar
  8. 8.
    Karasawa, Y., Iwasaki, H.: A parallel skeleton library for multi-core clusters. In: Proceedings of the 2009 International Conference on Parallel Processing, ICPP 2009, pp. 84–91. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  9. 9.
    Ciechanowicz, P., Poldner, M., Kuchen, H.: The Munster skeleton library Muesli – a comprehensive overview. In: ERCIS Working paper. Number 7 (2009)Google Scholar
  10. 10.
    Ciechanowicz, P., Kuchen, H.: Enhancing muesli’s data parallel skeletons for multi-core computer architectures. In: Proceedings of the 2010 IEEE 12th International Conference on High Performance Computing and Communications, HPCC 2010, pp. 108–113. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  11. 11.
    Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and efficient streaming on multi-core. In: Programming Multi-core and Many-core Computing Systems. Parallel and Distributed Computing. Wiley (2012)Google Scholar
  12. 12.
    Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: An Efficient Unbounded Lock-Free Queue for Multi-core Systems. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 662–673. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Aldinucci, M., Danelutto, M., Torquati, M.: Fastflow tutorial. Technical Report TR-12-04, Università di Pisa, Dipartimento di Informatica, Italy (March 2012)Google Scholar
  14. 14.
    ZeroMQ: website (2012), http://www.zeromq.org/
  15. 15.
    Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Targeting heterogeneous architectures via macro data flow. Parallel Processing Letters 22(2) (June 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco Aldinucci
    • 1
  • Sonia Campa
    • 2
  • Marco Danelutto
    • 2
  • Peter Kilpatrick
    • 3
  • Massimo Torquati
    • 2
  1. 1.Computer Science DepartmentUniversity of TorinoItaly
  2. 2.Computer Science DepartmentUniversity of PisaItaly
  3. 3.Computer Science DepartmentQueen’s University BelfastUK

Personalised recommendations