Runtime Virtual Machine Recontextualization for Clouds

  • Django Armstrong
  • Daniel Espling
  • Johan Tordsson
  • Karim Djemame
  • Erik Elmroth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7640)

Abstract

We introduce and define the concept of recontextualization for cloud applications by extending contextualization, i.e. the dynamic configuration of virtual machines (VM) upon initialization, with autonomous updates during runtime. Recontextualization allows VM images and instances to be dynamically re-configured without restarts or downtime, and the concept is applicable to all aspects of configuring a VM from virtual hardware to multi-tier software stacks. Moreover, we propose a runtime cloud recontextualization mechanism based on virtual device management that enables recontextualization without the need to customize the guest VM. We illustrate our concept and validate our mechanism via a use case demonstration: the reconfiguration of a cross-cloud migratable monitoring service in a dynamic cloud environment. We discuss the details of the interoperable recontextualization mechanism, its architecture and demonstrate a proof of concept implementation. A performance evaluation illustrates the feasibility of the approach and shows that the recontextualization mechanism performs adequately with an overhead of 18% of the total migration time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong, D., Djemame, K., Nair, S., Tordsson, J., Ziegler, W.: Towards a contextualization solution for cloud platform services. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), pp. 328–331. IEEE (2011)Google Scholar
  2. 2.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. SIGOPS Oper. Syst. Rev. 37(5), 164–177 (2003)CrossRefGoogle Scholar
  3. 3.
    Bradford, R., Kotsovinos, E., Feldmann, A., Schiöberg, H.: Live wide-area migration of virtual machines including local persistent state. In: Proceedings of the 3rd International Conference on Virtual Execution Environments, pp. 169–179. ACM (June 2007)Google Scholar
  4. 4.
    Clark, C., Fraser, K., Hand, S., Hansen, J., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation, vol. 2, pp. 273–286. USENIX Association (May 2005)Google Scholar
  5. 5.
    Clayman, S., Galis, A., Chapman, C., Toffetti, G., Rodero Merino, L., Vaquero, L., Nagin, K., Rochwerger, B.: Monitoring Service Clouds in the Future Internet. In: Towards the Future Internet - Emerging Trends from European Research, pp. 115–126. IOS Press, Amsterdam (2010)Google Scholar
  6. 6.
    Ferrer, A., Hernández, F., Tordsson, J., Elmroth, E., Ali-Eldin, A., Zsigri, C., Sirvent, R., Guitart, J., Badia, R., Djemame, K., Ziegler, W., Dimitrakos, T., Nair, S., Kousiouris, G., Konstanteli, K., Varvarigou, T., Hudzia, B., Kipp, A., Wesner, S., Corrales, M., Forgó, N., Sharif, T., Sheridan, C.: OPTIMIS: a holistic approach to cloud service provisioning. Future Generation Computer Systems (2011)Google Scholar
  7. 7.
    Katsaros, G., Gallizo, G., Kübert, R., Wang, T., Oriol Fito, J., Henriksson, D.: A Multi-level Architecture for Collecting and Managing Monitoring Information in Cloud Environments. In: CLOSER 2011: International Conference on Cloud Computing and Services Science (CLOSER), Noordwijkerhout, The Netherlands (May 2011)Google Scholar
  8. 8.
    Keahey, K., Freeman, T.: Contextualization: Providing One-Click Virtual Clusters. In: Proceedings of the 4th IEEE International Conference on eScience (ESCIENCE 2008), pp. 301–308. IEEE, Washington, DC (2008)CrossRefGoogle Scholar
  9. 9.
    Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux virtual machine monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225–230 (2007)Google Scholar
  11. 11.
    Libvirt development team. Libvirt: The virtualization API (February 2012), http://libvirt.org/
  12. 12.
    Liu, P., Yang, Z., Song, X., Zhou, Y., Chen, H., Zang, B.: Heterogeneous live migration of virtual machines. In: International Workshop on Virtualization Technology, IWVT 2008 (2008)Google Scholar
  13. 13.
    QEMU development team. QEMU - An open source machine emulator and virtualizer (February 2012), http://www.qemu.org
  14. 14.
    Turnbull, J.: Pulling strings with puppet: configuration management made easy. Springer (2008)Google Scholar
  15. 15.
    Wood, T., Ramakrishnan, K.K., Shenoy, P., van der Merwe, J.: CloudNet: dynamic pooling of cloud resources by live WAN migration of virtual machines. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 121–132. ACM (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Django Armstrong
    • 1
  • Daniel Espling
    • 2
  • Johan Tordsson
    • 2
  • Karim Djemame
    • 1
  • Erik Elmroth
    • 2
  1. 1.University of LeedsUnited Kingdom
  2. 2.Umeå UniversitySweden

Personalised recommendations