Biomimetic Inspiration Regarding Nano-Tribology and Materials Issues in MEMS

  • Ille C. Gebeshuber


Tribology is omnipresent in living nature. Blinking eyes, synovial joints, white blood cells rolling along the endothelium and the foetus moving in a mother’s womb—tribological problems with evolutionary optimized solutions! This chapter introduces biology for tribologists, highlights the benefits of biomimetics (i.e., knowledge transfer from living nature to engineering), first for tribology in general and subsequently specifically for nano-tribology and materials issues in MEMS. The outlook deals with perspectives of green and sustainable nanotribology for a liveable future for all.


Diatom Species Material Issue Digital Micromirror Device Lotus Leaf Girdle Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The National University of Malaysia funded part of this work with its leading-edge research project scheme ‘Arus Perdana’ (grant # UKM-AP-NBT-16-2010) and the Austrian Society for the Advancement of Plant Sciences via our biomimetics pilot project ‘BioScreen’. Profs. F. Aumayr, H. Störi and G. Badurek from the Vienna University of Technology are acknowledged for enabling ICG research in the inspiring environment in Malaysia.


  1. 1.
    Kinoshita, S.: Structural Colors in the Realm of Nature. World Scientific Publishing Company, Singapore (2008)CrossRefGoogle Scholar
  2. 2.
    Gebeshuber, I.C., Lee, D.W.: Nanostructures for coloration (organisms other than animals). In: Bhushan B., Nosonovsky M. (eds.), pp. 1790–1803, Springer Encyclopedia of Nanotechnology. Springer, Berlin (2012)Google Scholar
  3. 3.
    Round, F.E., Crawford, R.M., Mann, D.G.: The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge (1990)Google Scholar
  4. 4.
    Crawford, R.M., Gebeshuber, I.C.: Harmony of beauty and expediency. Sci First Hand [A good journal for inquisitive people (published by the Siberian Branch of the Russian Academy of Sciences)] 5(10), 30–36 (2006)Google Scholar
  5. .
    Gebeshuber, I.C., Crawford, R.M.: Micromechanics in biogenic hydrated silica: Hinges and interlocking devices in diatoms. Proc. IMechE Part J: J. Eng. Tribol. 220(J8), 787–796 (2006)Google Scholar
  6. 6.
    Gordon, R., Witkowski, A., Gebeshuber, I.C., Allen, C.S.: The diatoms of Antarctica and their potential roles in nanotechnology. In: Chillida, A., Masó, M., Masó M., Chillida, A. (eds.) Antarctica. Time of Change, English edition, pp. 84–95. ActarBirkhauser, Barcelona (2010)Google Scholar
  7. 7.
    Gebeshuber, I.C., Matin, T.R., Halim, L., Ariffin, S.: Nano-scale undergraduate education program. In: Guston, D., Golson, J.G. (eds.) Encyclopedia of nanoscience and society, vol. 2, pp. 528–530. Sage Publications, CA (2010)Google Scholar
  8. 8.
    Gebeshuber, I.C., Majlis, B.Y.: 3D corporate tourism: A concept for innovation in nanomaterials engineering. Int. J. Mat. Eng. Innov. 2(1), 38–48 (2011)CrossRefGoogle Scholar
  9. 9.
    Gebeshuber, I.C., Gruber, P., Drack, M.: Nanobioconvergence. In: Guston, D., Golson, J.G. (eds.) Encyclopedia of Nanoscience and Society, vol. 2, pp. 454–456. Sage Publications, CA (2010)Google Scholar
  10. 10.
    Gebeshuber, I.C., Majlis, B.Y., Stachelberger, H.: Biomimetics in tribology. In: Gruber, P., Bruckner, D., Hellmich, C., Schmiedmayer, H.-B., Stachelberger, H., Gebeshuber, I.C. (eds.) Biomimetics-Materials, Structures and Processes. Examples, Ideas and Case Studies. Ascheron C. (Series ed.) Biological and Medical Physics, Biomedical Engineering, Ch. 3, pp. 25–50. Springer Publishing, Berlin (2011)Google Scholar
  11. 11.
    Scherge, M., Gorb, S.: Biological Micro– and Nanotribology Nature’s Solutions. NanoScience and TechnologySpringer, Berlin (2001)Google Scholar
  12. 12.
    Gebeshuber, I.C., Drack, M.: An attempt to reveal synergies between biology and engineering mechanics. Proc. IMechE Part C J. Mech. Eng. Sci. 222(7), 1281–1287 (2008)CrossRefGoogle Scholar
  13. 13.
    Drack, M., Wimmer, R., Hohensinner, H.: Treeplast screw: a device for mounting various items to straw bale constructions. J. Sustain. Prod. Des. 4(1–4), 33–41 (2006)Google Scholar
  14. 14.
    Johnson, A.T.: Biology for engineers. CRC Press, Boca Raton (2010)Google Scholar
  15. 15.
    Dowson, D.: Engineering at the interface. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 206, 149–165 (1992)CrossRefGoogle Scholar
  16. 16.
    Dowson, D., Unsworth, A., Wright, V.: Analysis of ‘boosted lubrication’ in human joints. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 12, 364–369 (1970)CrossRefGoogle Scholar
  17. 17.
    Higginson, G.R., Norman, R.: The lubrication of porous elastic solids with reference to the functioning of human joints. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 16(4), 250–257 (1974)CrossRefGoogle Scholar
  18. 18.
    Gebeshuber I.C.: Engineering at the interface revisited. Proc. IMechE Part C: J. Mech. Eng. Sci. 50st Anniversary Issue, 223(C1), 65–101 (2009)Google Scholar
  19. 19.
    Gruber, P., Bruckner, D., Hellmich, C., Schmiedmayer, H.-B., Stachelberger, H., Gebeshuber, I.C. (eds.): Biomimetics–materials, structures and processes. Examples, ideas and case studies, Ascheron C. (Series ed.) Biological and medical physics, biomedical engineering, p. 266. Springer, New York (2011)Google Scholar
  20. 20.
    Gebeshuber, I.C., Kindt, J.H., Thompson, J.B., DelAmo, Y., Brzezinski, M., Stucky, G.D., Morse, D.E., Hansma, P.K.: Atomic force microscopy of diatoms in vivo, Abstr. 15th North American Diatom Symposium, Pingree Park Campus, Colorado State University, vol. 8 (1999)Google Scholar
  21. 21.
    Gebeshuber, I.C., Kindt, J.H., Thompson, J.B., Del Amo, Y., Stachelberger, H., Brzezinski, M., Stucky, G.D., Morse, D.E., Hansma, P.K.: Atomic force microscopy study of living diatoms in ambient conditions. J. Microsc. 212(Pt3), 292–299 (2003)Google Scholar
  22. 22.
    Gebeshuber, I.C., Drack, M., Scherge, M.: Tribology in biology. Tribol. Surf. Mater. Interfaces 2(4), 200–212 (2008)CrossRefGoogle Scholar
  23. 23.
    Linn, F.C.: Lubrication of animal joints, 1. The Arthrotripsometer. J. Bone Joint Surg. Am. 49A, 1079–1098 (1967)Google Scholar
  24. 24.
    McCutchen, C.W.: Mechanism of animal joints: Sponge-hydrostatic and weeping bearings. Nature 184, 1284–1285 (1959)CrossRefGoogle Scholar
  25. 25.
    Unsworth, A., Dowson, D., Wright, V.: The frictional behaviour of human synovial joints—Part 1. Natural joints. Trans. Am. Soc. Mech. Eng. Seri. F: J. Lubrication Technol. 97, 369–376 (1975)CrossRefGoogle Scholar
  26. 26.
    Steika, N., Furey, M.J., Veit, H.P.: Biotribology: The wear-resistance of repaired human articular cartilage. ASME Conf. Proc. World Tribol. Congr. III(2), WTC2005-63304, 619–620 (2005) Google Scholar
  27. 27.
    Steika, N., Furey, M.J., Veit, H.P., Brittberg, M.: Biotribology: ‘In vitro’ wear studies of human articular cartilage. Proceedings of NORDTRIB, pp. 773–782 (2004)Google Scholar
  28. 28.
    Tees, D.F., Goetz, D.J.: Leukocyte adhesion: an exquisite balance of hydrodynamic and molecular forces. News Physiol. Sci. 18, 186–190 (2003)Google Scholar
  29. 29.
    Orsello, C.E., Lauffenburger, D.A., Hammer, D.A.: Molecular properties in cell adhesion: a physical and engineering perspective. Trends Biotechnol. 19, 310–316 (2001)CrossRefGoogle Scholar
  30. 30.
    Gordon R. (ed.): Special issue on diatom nanotechnology. J. Nanosci. Nanotechnol. 5, 1–178 (2005)Google Scholar
  31. 31.
    Gebeshuber, I.C., Stachelberger, H., Drack, M.: Diatom biotribology. In: Dowson, D., Priest, M., Dalmaz, G., Lubrecht, A.A. (eds.) Life Cycle Tribology. Briscoe, B.J. (Series ed.) Tribology and Interface Engineering. vol. 48, pp. 365–370. Elsevier, NY (2005a)Google Scholar
  32. 32.
    Gebeshuber, I.C., Stachelberger, H., Drack, M.: Diatom bionanotribology–biological surfaces in relative motion: Their design, friction, adhesion, lubrication and wear. J. Nanosci. Nanotechnol. 5(1), 79–87 (2005b)CrossRefGoogle Scholar
  33. 33.
    Macqueen, M.O., Mueller, J., Dee, C.F., Gebeshuber, I.C.: GEMS: A MEMS-based way for the innervation of materials. Adv. Mater. Res. 254(8), 34–37 (2011)CrossRefGoogle Scholar
  34. 34.
    Gebeshuber, I.C., Majlis, B.Y.: New ways of scientific publishing and accessing human knowledge inspired by transdisciplinary approaches. Tribol. Surf. Mater. Interfaces 4(3), 143–151 (2010)Google Scholar
  35. 35.
    Schmitt, O.H.: Biomimetics in solving engineering problems. Talk given on 26 Apr 1982. (1982) (last accessed: 23 Apr 2012)
  36. 36.
    Bar-Cohen, Y.: Biomimetics: Biologically inspired technologies. CRC Press, Boca Raton (2005)CrossRefGoogle Scholar
  37. 37.
    Barthlott, W., Neinhuis, C.: The purity of sacred lotus or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)CrossRefGoogle Scholar
  38. 38.
    Sanchez, C., Arribart, H., Giraud-Guille, M.M.: Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277–288 (2005)CrossRefGoogle Scholar
  39. 39.
    Neville, A. (Guest ed.): Special issue on biomimetics in engineering. Proc. IMechE Part C: J. Mech. Eng. Sci. 221(C10), i, 1141–1230 (2007)Google Scholar
  40. 40.
    Nosonovsky, M., Bhushan, B.: Green tribology. Phil. Trans. Roy. Soc. A 368(1929), 4675–4890 (2010)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Nosonovsky, M., Bhushan, B.: Green Tribology: Biomimetics, energy conservation, and sustainability. Springer, Berlin (2012)CrossRefGoogle Scholar
  42. 42.
    Gebeshuber, I.C.: Green nanotribology and sustainable nanotribology in the frame of the global challenges for humankind. In: Nosonovsky, M., Bhushan, B. (eds.) Green Tribology–Biomimetics, Energy Conservation, and Sustainability. Green Energy and Technology, Ch. 5, pp. 105–125. Springer, Berlin (2012) Google Scholar
  43. 43.
    Gebeshuber I.C.: Green nanotribology. Proc. I Mech E Part C: J. Mech. Eng. Sci. 226(C2), 374–386 (2012)Google Scholar
  44. 44.
    Gebeshuber, I.C., Gruber, P., Drack, M.: A gaze into the crystal ball—biomimetics in the year 2059. Proc. IMechE Part C: J. Mech. Eng. Sci. 50st Anniversary Issue, 223(C12), 2899–2918 (2009)Google Scholar
  45. 45.
    Fiedeler, U., Nentwich, M., Simkó, M., Gazso, A.: What is accompanying research on nanotechnology? Nanotrust dossier 11. 1–4 Dec (2010) (last accessed 14 Mar 2013)
  46. 46.
    Devenport, W.J., Vogel, C.M., Zsoldos, J.S.: Flow structure produced by the interaction and merger of a pair of co-rotating wing-tip vortices. J. Fluid Mech. 394, 357–377 (1999)zbMATHCrossRefGoogle Scholar
  47. 47.
    Mattheck, C.: Design in Nature–learning from trees. Springer, Heidelberg (1998)Google Scholar
  48. 48.
    Barth, F.G.: Spider senses—technical perfection and biology. Zoology 105(4), 271–285 (2002)CrossRefGoogle Scholar
  49. 49.
    Barth, F.G.: A spider’s world: Senses and behaviour. Springer, Berlin (2002)CrossRefGoogle Scholar
  50. 50.
    Makarczuk ,T., Matin, T.R., Karman, S.B., Diah, S.Z.M., Davaji, B., Macqueen, M.O., Mueller, J., Schmid, U., Gebeshuber, I.C.: Biomimetic MEMS to assist, enhance and expand human sensory perceptions: a survey on state-of-the art developments. Proc. SPIE 8066. 80661O(15p), (2011). doi: 10.1117/12.886554
  51. 51.
    Lillywhite, P.G.: Single photon signals and transduction in an insect eye. J. Comp. Physiol. A. 122(2), 189–200 (1977)CrossRefGoogle Scholar
  52. 52.
    Crawford, A.C., Fettiplace, R.: The mechanical properties of ciliary bundles of turtle cochlear hair cells. J. Physiol. 364, 359–379 (1985)Google Scholar
  53. 53.
    Karman, S.B., Macqueen, M.O., Matin, T.R., Diah, S.M., Mueller, J., Yunas, J., Davaji, B., Makarczuk, T., Gebeshuber, I.C.: On the way to the bionic man: A novel approach to MEMS based on biological sensory systems. Adv. Mater. Res. 254(8), 38–41 (2011)CrossRefGoogle Scholar
  54. 54.
    Stachelberger, H., Gruber, P., Gebeshuber, I.C.: Biomimetics—its technological and societal potential. In: Gruber, P., Bruckner, D., Hellmich, C., Schmiedmayer, H.-B., Stachelberger, H., Gebeshuber, I.C. (eds.) Biomimetics—Materials, Structures and Processes. Examples, Ideas and Case Studies. Ascheron, C. (Series ed.) Biological and Medical Physics, Biomedical Engineering, Ch. 1, pp. 1–6. Springer Publishing, Berlin (2011) Google Scholar
  55. 55.
    Jorna R.J.: Sustainable Innovation: The Organisational, Human and Knowledge Dimension. Greenleaf Publishing, Sheffield (2006)Google Scholar
  56. 56.
    Bhushan, B. (ed.): Tribology issues and opportunities in MEMS. Springer, Berlin (1998)Google Scholar
  57. 57.
    Williams, J.A., Le, H.R.: Tribology and MEMS. J. Phys. D Appl. Phys. 39(12), R201 (2006)CrossRefGoogle Scholar
  58. 58.
    Kumar, S.S., Satyanarayana, N.: Nano-Tribology and Materials in MEMS (Eds. Sujeet Kumar Sinha, Nalam Satyanarayana and Seh Chun Lim). Springer, Berlin (2013)Google Scholar
  59. 59.
    Mate, C.M.: Tribology on the small scale: A bottom up approach to friction, lubrication, and wear. Mesoscopic Physics and Nanotechnology SeriesOxford University Press, New York (2008)Google Scholar
  60. 60.
    Rymuza, Z.: Tribology of Miniature Systems. Tribology SeriesElsevier Science Ltd, New York (1989)Google Scholar
  61. 61.
    Gebeshuber, I.C., Majlis, B.Y., Stachelberger, H.: Tribology in biology: Biomimetic studies across dimensions and across fields. Int. J. Mech. Mat. Eng. 4(3), 321–327 (2009)Google Scholar
  62. 62.
    Gebeshuber, I.C., Stachelberger, H., Ganji, B.A., Fu, D.C., Yunas, J., Majlis, B.Y.: Exploring the innovational potential of biomimetics for novel 3D MEMS. Adv. Mat. Res. 74, 265–268 (2009)CrossRefGoogle Scholar
  63. 63.
    Tiffany, M.A., Gordon, R., Gebeshuber, I.C.: Hyalodiscopsis plana, a sublittoral centric marine diatom, and its potential for nanotechnology as a natural zipper-like nanoclasp. Pol. Bot. J. 55(1), 27–41 (2010)Google Scholar
  64. 64.
    Nachtigall, W.: Vorbild Natur: Bionik-Design für funktionelles Gestalten. Springer, Berlin (1997)CrossRefGoogle Scholar
  65. 65.
    Fratzl, P., Weinkamer, R.: Nature’s hierarchical materials. Progr. Mat. Sci. 52(8), 1263–1334 (2007)CrossRefGoogle Scholar
  66. 66.
    Vincent, J.F.V.: Deconstructing the design of a biological material. J. Theor. Biol. 236, 73–78 (2005)CrossRefGoogle Scholar
  67. 67.
    Gebeshuber, I.C., Thompson, J.B., Del Amo, Y., Stachelberger, H., Kindt, J.H.: In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties. Mat. Sci. Technol. 18(7), 763–766 (2002)CrossRefGoogle Scholar
  68. 68.
    Smith, B.L., Schäffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., Hansma, P.K.: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999)CrossRefGoogle Scholar
  69. 69.
    Gebeshuber, I.C.: Biotribology inspires new technologies. Nano Today 2(5), 30–37 (2007)CrossRefGoogle Scholar
  70. 70.
    Kasapi, M.A., Gosline, J.M.: Design complexity and fracture control in the equine hoof wall. J. Exp. Biol. 200, 1639–1659 (1997)Google Scholar
  71. 71.
    Kasapi, M.A., Gosline, J.M.: Micromechanics of the equine hoof wall: optimizing crack control and material stiffness through modulation of the properties of keratin. J. Exp. Biol. 202, 377–391 (1999)Google Scholar
  72. 72.
    Viani, M.B., Pietrasanta, L.I., Thompson, J.B., Chand, A., Gebeshuber, I.C., Kindt, J.H., Richter, M., Hansma, H.G., Hansma, P.K.: Probing protein–protein interactions in real time. Nat. Struct. Biol. 7(8), 644–647 (2000)CrossRefGoogle Scholar
  73. 73.
    Srajer, J., Majlis, B.Y., Gebeshuber, I.C.: Microfluidic simulation of a colonial diatom chain reveals oscillatory movement. Acta Bot. Croat. 68(2), 431–441 (2009)Google Scholar
  74. 74.
    Scherge, M., Gorb, S.N.: Using biological principles to design MEMS. J. Micromech. Microeng. 10(3), 359–364 (2000)CrossRefGoogle Scholar
  75. 75.
    Freitas, R.A.: Nanomedicine, 15.2.2, Vol. IIA: Biocompatibility, Landes Bioscience Publishing, USA (2003)Google Scholar
  76. 76.
    Chang, W.C., Lee, L.P., Liepmann, D.: Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip 5(1), 64–73 (2005)CrossRefGoogle Scholar
  77. 77.
    Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)CrossRefGoogle Scholar
  78. 78.
    Autumn, K., Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N., Full, R.J.: Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. 99(19), 12252–12256 (2002)CrossRefGoogle Scholar
  79. 79.
    Shah, G.J., Sitti, M.: Modeling and design of biomimetic adhesives inspired by gecko foot-hairs. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), p. 873. (2004)Google Scholar
  80. 80.
    Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., Shapoval, SYu.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461–463 (2003)CrossRefGoogle Scholar
  81. 81.
    Gebeshuber, I.C., Gordon, R.: Bioinspiration for tribological systems on the micro- and nanoscale: Dynamic, mechanic, surface and structure related functions”, invited article. Micro and Nanosystems 3(4), 271–276 (2011)CrossRefGoogle Scholar
  82. 82.
    Alexander, D.E.: Nature’s flyers: birds, insects, and the biomechanics of flight. The Johns Hopkins University Press, Baltimore (2004)Google Scholar
  83. 83.
    Nachtigall, W.: Bionik: Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler. Springer, Heidelberg (2002)Google Scholar
  84. 84.
    Nachtigall, W.: Das große Buch der Bionik. Deutsche Verlagsanstalt, München (2003)Google Scholar
  85. 85.
    Tributsch, H.: How Life Learned to Live. MIT Press, Cambridge (1984)Google Scholar
  86. 86.
    Vogel, S.: Life’s devices: the physical world of animals and plants. Princeton University Press, Princeton (1988)Google Scholar
  87. 87.
    Vogel, S.: Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton (1996)Google Scholar
  88. 88.
    Vogel, S.: Cats’ paws and catapults: mechanical worlds of nature and people. WW Norton & Co, New York (1998)Google Scholar
  89. 89.
    Vogel, S.: Comparative biomechanics: Life’s physical world. Princeton University Press, Princeton (2003)Google Scholar
  90. 90.
    Anonymous.: Summary: World Tribology Congress 2009 (WTC IV) International Tribology Council Information 191, (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Microengineering and Nanoelectronics (IMEN)Universiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Institute of Applied PhysicsVienna University of TechnologyViennaAustria
  3. 3.Austrian Center of Competence for TribologyWiener NeustadtAustria

Personalised recommendations