Atmospheric Effects on Earth Rotation

  • Michael Schindelegger
  • Sigrid Böhm
  • Johannes Böhm
  • Harald Schuh
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

One of the pivotal sources for fluctuations in all three components of the Earth’s rotation vector is the set of dynamical processes in the atmosphere, perceptible as motion and mass redistribution effects on a multitude of temporal and spatial scales. This review outlines the underlying theoretical framework for studying the impact of such geophysical excitation mechanisms on nutation, polar motion, and changes in length of day. It primarily addresses the so-called angular momentum approach with regard to its physical meaning and the application of data from numerical weather models. Emphasis is placed on the different transfer functions that are required for the frequency-dependent intercomparison of Earth rotation values from space geodetic techniques and the excitations from the output of atmospheric circulation models. The geophysical discussion of the review assesses the deficiencies of present excitation formalisms and acknowledges the oceans as other important driving agents for observed Earth rotation variations. A comparison of the angular momentum approach for the atmosphere to an alternative but equivalent modeling method involving Earth-atmosphere interaction torques is provided as well.

References

  1. Z. Altamimi, P. Sillard, and C. Boucher. The impact of a no-net-rotation condition on ITRF2000. Geophys. Res. Lett., 30(2):1064, doi:10.1029/2002GL016279, 2003.
  2. R. Barnes, R. Hide, A. White, and C. Wilson. Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc. R. Soc. Lond., A 387:31–73, 1983.Google Scholar
  3. C. Bizouard. Excitation of the polar motion and rotation rate. IERS EOP Product Center, Observatoire de Paris. http://hpiers.obspm.fr/eop-pc/, as at June 2011
  4. C. Bizouard, A. Brzeziński, and S. Petrov. Diurnal atmospheric forcing and temporal variations of the nutation amplitudes. J. Geod., 72:561–577, 1998.Google Scholar
  5. A. Brzeziński. Polar motion excitation by variations of the effective angular momentum function: considerations concerning the deconvolution problem. Manuscr. Geodaet., 17:3–20, 1992.Google Scholar
  6. A. Brzeziński. Polar motion excitation by variations of the effective angular momentum function, II: extended-model. Manuscr. Geodaet., 19:157–171, 1994.Google Scholar
  7. A. Brzeziński and N. Capitaine. The use of the precise observations of the celestial ephemeris pole in the analysis of geophysical excitation of Earth rotation. J. Geophys. Res., 98(B4):6667–6675, 1993.Google Scholar
  8. A. Brzeziński, C. Bizouard, and S.D. Petrov. Influence of the atmosphere on Earth rotation: What new can be learned from the recent atmospheric angular momentum estimates? Surv. Geophys., 23:33–69, doi:10.1023/A:1014847319391, 2002.Google Scholar
  9. A. Brzeziński, H. Dobslaw, and R. Dill. Geophysical excitation of the Chandler wobble revisited. In Kenyon S.C., Pacino M.C., Marti U.J., editor, Geodesy for Planet Earth, Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentinia, 31 August - 4 September 2009, pages 499–505. Springer, 2012.Google Scholar
  10. B.F. Chao. On the excitation of the Earth’s free wobble and reference frames. Geophys. J. R. Astron. Soc., 79:555–563, 1984.Google Scholar
  11. B.F. Chao. On the excitation of the Earth’s polar motion. Geophys. Res. Lett., 12(8):526–529, 1985.Google Scholar
  12. B.F. Chao. Length-of-day variations caused by El Nino-Southern Oscillation and quasi-biennial oscillation. Science, 243:923–925, 1989.Google Scholar
  13. B.F. Chao, R. Ray, J. Gipson, G. Egbert, and C. Ma. Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum. J. Geophys. Res., 101(B9) (B9):20151–20163, doi:10.1029/96JB01649, 1996.Google Scholar
  14. J.L. Chen and C.R. Wilson. Hydrological excitations of polar motion, 1993–2002. Geophys. J. Int., 160:833–839, doi:10.1111/j.1365-246X.2005.02522.x, 2005.
  15. J.L. Chen, C.R. Wilson, B.F. Chao, C.K. Shum, and B.D. Tapley. Hydrological and oceanic excitations to polar motion and length-of-day variations. Geophys. J. Int., 141:149–156, doi:10.1046/j.1365-246X.2000.00069.x, 2000.Google Scholar
  16. F.A. Dahlen. The passive influence of the oceans upon the rotation of the Earth. Geophys. J. R. Astron. Soc., 46:363–406, 1976.Google Scholar
  17. O. de Viron and V. Dehant. Earth’s rotation and high frequency equatorial angular momentum budget of the atmosphere. Surv. Geophys., 20:441–462, doi:10.1023/A:1006723924421, 1999.
  18. O. de Viron and V. Dehant. Tests on the validity of atmospheric torques on Earth computed from atmospheric model outputs. J. Geophys. Res., 108(B2):2068, doi:10.1029/2001JB001196, 2003.
  19. O. de Viron, C. Bizouard, D. Salstein, and V. Dehant. Atmospheric torque on the Earth and comparison with atmospheric angular momentum variations. J. Geophys. Res., 104(B3):4861–4875, doi:10.1029/1998JB900063, 1999.Google Scholar
  20. O. de Viron, R.M. Ponte, and V. Dehant. Indirect effect of the atmosphere through the oceans on the Earth nutation using the torque approach. J. Geophys. Res., 106(B5):8841–8851, doi:10.1029/2000JB900387, 2001a.
  21. O. de Viron, S.L. Marcus, and J. Dickey. Diurnal angular momentum budget of the atmosphere and its consequences for Earth’s nutation. J. Geophys. Res., 106(B11):26747–26759, doi:10.1029/2000JB000098, 2001b.
  22. O. de Viron, L. Koot, and V. Dehant. Polar motion models: the torque approach. In Plag H.P., Chao B.F., Gross R.S., van Dam T., editor, Forcing of Polar Motion in the Chandler Frequency Band: A Contribution to Understanding Interannual Climate Change, volume 24. Cahiers du Centre Européen de Géodynamique et du Séismologie, Luxembourg, 2005.Google Scholar
  23. V. Dehant and O. de Viron. Earth rotation as an interdisciplinary topic shared by astronomers, geodesists and geophysicists. Adv. Space Res., 30(2):163–173, doi:10.1016/S0273-1177(02)00281-8, 2002.
  24. V. Dehant, C. Bizouard, J. Hinderer, H. Legros, and M. Greff-Lefftz. On atmospheric pressure perturbations on precession and nutations. Phys. Earth Planet. Interiors, 96:25–39, doi:10.1016/0031-9201(95)03112-X, 1996.Google Scholar
  25. V. Dehant, F. Arias, C. Bizouard, P. Bretagnon, A. Brzeziński, B. Buffett, N. Capitaine, P. Defraigne, O. de Viron, M. Feissel, H. Fliegel, A. Forte, D. Gambis, J. Getino, R. Gross, T. Herring, H. Kinoshita, S. Klioner, P.M. Mathews, D. McCarthy, X. Moisson, S. Petrov, R.M. Ponte, F. Roosbeek, D. Salstein, H. Schuh, K. Seidelmann, M. Soffel, J. Souchay, J. Vondrák, J.M. Wahr, P. Wallace, R. Weber, J. Williams, Y. Yatskiv, V. Zharov, and S.Y. Zhu. Considerations concerning the non-rigid Earth nutation theory. Cel. Mech. Dyn. Astron., 72:245–310, 1999.Google Scholar
  26. J.O. Dickey, S.L. Marcus, and O. de Viron. Closure in the Earth’s angular momentum budget observed from subseasonal periods down to four days: No core effects needed. Geophys. Res. Lett., 37:L03307, doi:10.1029/2009GL041118, 2010.
  27. S.R. Dickman. Evaluation of ’effective angular momentum functions’ formulations with respect to core-mantle coupling. J. Geophys. Res., 108(B3):2150, doi:10.1029/2001JB001603, 2003.Google Scholar
  28. S.R. Dickman. Rotationally consistent Love numbers. Geophys. J. Int., 161:31–40, doi:10.1111/j.1365-246X.2005.02574.x, 2005.Google Scholar
  29. H. Dobslaw, R. Dill, A. Grötzsch, A. Brzeziński, and M. Thomas. Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J. Geophys. Res., 115:B10406, doi:10.1029/2009JB007127, 2010.
  30. T.M. Eubanks. Variations of the orientation of the Earth. In Smith D.E., Turcotte, D.L., editor, Contributions of Space Geodesy to Geodynamics: Earth Dynamics, volume 24, pages 1–54. AGU, Washington, 1993.Google Scholar
  31. S.B. Feldstein. The dynamics of atmospherically driven intraseasonal polar motion. J. Atm. Sci., 65(7):2290–2307, doi:10.1175/2007JAS2640.1, 2008.Google Scholar
  32. M. Fujita, B.F. Chao, B.V. Sanchez, and T.J. Johnson. Oceanic torques on solid Earth and their effects on Earth rotation. J. Geophys. Res., 107(B8):2154, doi:10.1029/2001JB000339, 2002.Google Scholar
  33. R.S. Gross. Correspondence between theory and observations of polar motion. Geophys. J. Int., 109(1):162–170, doi:10.1111/j.1365-246X.1992.tb00086.x, 1992.Google Scholar
  34. R.S. Gross. The effect of ocean tides on the Earth’s rotation as predicted by the results of an ocean tide model. Geophys. Res. Lett., 20(4):293–296, 1993.Google Scholar
  35. R.S. Gross. The excitation of the Chandler wobble. Geophys. Res. Lett., 27(15):2329–2332, doi:10.1029/2000GL011450, 2000.Google Scholar
  36. R.S. Gross. Earth rotation variations - long period. In Herring T.A., editor, Treatise on Geophysics, volume 3, Geodesy, pages 239–294. Elsevier, 2007.Google Scholar
  37. R.S. Gross, H.K. Hamdan, and D.H. Boggs. Evidence for excitation of polar motion by fortnightly ocean tides. Geophys. Res. Lett., 23(14):1809–1812, doi:10.1029/96GL01596, 1996.Google Scholar
  38. R.S. Gross, I. Fukumori, and D. Menemenlis. Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J. Geophys. Res., 108(B8):2370, doi: P10.1029/2002JB002143, 2003.Google Scholar
  39. R.S. Gross, I. Fukumori, D. Menemenlis, and P. Gegout. Atmospheric and oceanic excitation of length-of-day variations during 1980–2000. J. Geophys. Res., 109(B01406), 2004.Google Scholar
  40. T.A. Herring, C.R. Gwinn, and I.I. Shapiro. Geodesy by radio interferometry: Studies of the forced nutations of the Earth: 1. Data Analysis. J. Geophys. Res., 91(B5):4745–4754, doi:10.1029/JB091iB05p04745, 1986.Google Scholar
  41. J.R. Holton and R.S. Lindzen. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atm. Sci., 29 (6):1076–1080, 1972.Google Scholar
  42. H. Iskenderian and D.A. Salstein. Regional sources of mountain torque variability and high-frequency fluctuations in atmospheric angular momentum. Mon. Wea. Rev., 126:1681–1694, 1998.Google Scholar
  43. H. Jeffreys. Causes contributory to the annual variation of latitude. Mon. Not. R. Astron. Soc., 76:499–525, 1916.Google Scholar
  44. L. Koot and O. de Viron. Atmospheric contributions to nutations and implications for the estimation of deep Earth’s properties from nutation observations. Geophys. J. Int., 185:1255–1265, doi:10.1111/j.1365-246X.2011.05026.x, 2011.Google Scholar
  45. K. Lambeck. The Earth’s Variable Rotation, Geophysical Causes and Consequences. Cambridge University Press, 1980.Google Scholar
  46. R. Madden and P. Julian. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28:702–708, 1971.Google Scholar
  47. P.M. Mathews, T.A. Herring, and B.A. Buffett. Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth’s interior. J. Geophys. Res., 104(B4):2068, doi:10.1029/2001JB000390, 2002.
  48. D.D. McCarthy and B. Luzum. IERS Conventions 2010. IERS Technical Note, (36):179 pp., 2010.Google Scholar
  49. P. McClure. Diurnal polar motion. GSFC document X-592-73-259, Goddard Space Flight Center, Greenbelt, Maryland, 1973.Google Scholar
  50. P.J. Mendes Cerveira, J. Böhm, H. Schuh, T. Klügel, A. Velikoseltsev, U. Schreiber, and A. Brzeziński. Earth rotation observed by Very Long Baseline Interferometry and ring laser. Pure Appl. Geophys., 166(8–9):1499–1517, doi:10.1007/s00024-004-0487-z, 2009.Google Scholar
  51. J.B. Merriam. Zonal tides and changes in the length of day. Geophys. J. R. Astron. Soci., 62:551–561, 1980.Google Scholar
  52. H. Moritz and I.I. Müller. Earth Rotation: Theory and Observation. Ungar, New York, 1987.Google Scholar
  53. L.V. Morrison and F.R. Stephenson. Historical eclipses and the variability of the Earth’s rotation. J. Geodyn., 32(1–2):247–265, doi:10.1016/S0264-3707(01)00024-2, 2001.Google Scholar
  54. W.H. Munk and G.J.F. MacDonald. The Rotation of the Earth: A Geophysical Discussion. Cambridge University Press, New York, 1960.Google Scholar
  55. J. Nastula and D. Salstein. Regional atmospheric angular momentum contributions to polar motion excitation. J. Geophys. Res., 104(B4):7347–7358, doi:10.1029/1998JB900077, 1999.Google Scholar
  56. S.G. Philander. El Niño, La Niña, and the Southern Oscillation. Academic Press, San Diego, 1990.Google Scholar
  57. R.M. Ponte. Oceanic excitation of daily to seasonal signals in Earth rotation: results from a constant-density numerical model. Geophys. J. Int., 130(2):469–474, doi:10.1111/j.1365-246X.1997.tb05662.x, 1997.
  58. R.D. Ray, D.J. Steinberg, B.F. Chao, and D.E. Cartwright. Diurnal and semidiurnal variations in the Earth’s rotation rate induced by oceanic tides. Science, 264(5160):830–832, doi:10.1126/science.264.5160.830, 1994.Google Scholar
  59. D.A. Salstein. Angular momentum of the atmosphere. In J. Holton, J. Pyle, J. Curry, editor, Encyclopedia of Atmospheric Sciences, pages 128–134. Elsevier, 2002.Google Scholar
  60. D.A. Salstein and R.D. Rosen. Topographic forcing of the atmosphere and a rapid change in the length of day. Science, 264:407–409, 1994.Google Scholar
  61. T. Sasao and J.M. Wahr. An excitation mechanism for the free ’core nutation’. Geophys. J. R. Astron. Soc., 64:729–746, 1981.Google Scholar
  62. M. Schindelegger, J. Böhm, D. Salstein, and H. Schuh. High-resolution atmospheric angular momentum functions related to Earth rotation parameters during CONT08. J. Geod., 8(7):425–433, doi:10.1007/s00190-011-0458-y, 2011.Google Scholar
  63. H. Schuh and S. Böhm. Earth rotation. In H.K. Gupta, editor, Encyclopedia of Solid Earth Geophysics, pages 123–129. Springer, 2011.Google Scholar
  64. H. Schuh, S. Nagel, and T. Seitz. Linear drift and periodic variations observed in long time series of polar motion. J. Geod., 74(10):701–710, doi:10.1007/s001900000133, 2001.
  65. F. Seitz. Atmosphärische und ozeanische Einflüsse auf die Rotation der Erde - Numerische Untersuchungen mit einem dynamischen Erdsystemmodell. C578, Deutsche Geodätische Kommission, München (in German), 2004.Google Scholar
  66. F. Seitz and H. Schuh. Earth rotation. In G. Xu, editor, Science of Geodesy I: Advances and Future Directions, pages 185–227. Springer, 2010.Google Scholar
  67. M.L. Smith and F.A. Dahlen. The period and Q of the Chandler wobble. Geophys. J. R. Astron. Soc., 64:223–281, 1981.Google Scholar
  68. R.O. Vicente and C.R. Wilson. On the variability of the Chandler frequency. J. Geophys. Res., 102(B9):20439–20445, doi:10.1029/97JB01275, 1997.Google Scholar
  69. J. Vondrák and C. Ron. Quasi-diurnal atmospheric and oceanic excitation of nutation. Acta Geodyn. Geomater., 4(4):121–128, 2007.Google Scholar
  70. J. Vondrák and C. Ron. Study of atmospheric and oceanic excitations in the motion of Earth’s spin axis in space. Acta Geodyn. Geomater., 7(1):19–28, 2010.Google Scholar
  71. J.M. Wahr. The effects of the atmosphere and oceans on the Earth’s wobble - I. Theory. Geophys. J. R. Astron. Soc., 70:349–372, 1982.Google Scholar
  72. J.M. Wahr. The effects of the atmosphere and oceans on the Earth’s wobble and on the seasonal variations in the length of day - II. Results. Geophys. J. R. Astron. Soc., 74:451–487, 1983.Google Scholar
  73. J.M. Wahr. Polar motion models: Angular momentum approach. In Plag H.P., Chao B.F., Gross R.S., van Dam T., editor, it Forcing of Polar Motion in the Chandler Frequency Band: A Contribution to Understanding Interannual Climate Change, volume 24. Cahiers du Centre Européen de Géodynamique et du Séismologie, Luxembourg, 2005.Google Scholar
  74. J.M. Wahr and A.H. Oort. Friction- and mountain-torque estimates from global atmospheric data. J. Atm. Sci., 41(2):190–204, 1984.Google Scholar
  75. J.M. Wahr, T. Sasao, and M.L. Smith. Effect of the fluid core on changes in the length of day due to long period tides. Geophys. J. R. Astron. Soc., 64:635–650, 1981.Google Scholar
  76. W.L. Wolf and R.B. Smith. Length-of-day changes and mountain torques during El Nino. J. Atm. Sci., 44(24):3656–3660, 1987.Google Scholar
  77. C. Wunsch and D. Stammer. Atmospheric loading and the oceanic ’inverted barometer’ effect. Rev. Geophys., 35(1):79–107, doi:10.1029/96RG03037, 1997.Google Scholar
  78. Y.H. Zhou, D.A. Salstein, and J.L. Chen. Revised atmospheric excitation function series related to Earth’s variable rotation under consideration of surface topography. J. Geophys. Res., 111(D12108): doi:10.1029/2005JD006608, 2006.
  79. W. Zürn. The Nearly-Diurnal Free Wobble-resonance. In Wilhelm H., Zürn W., Wenzel H., editor, Tidal Phenomena, pages 95–107. Springer, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Schindelegger
    • 1
  • Sigrid Böhm
    • 1
  • Johannes Böhm
    • 1
  • Harald Schuh
    • 2
  1. 1.Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria
  2. 2.Department 1 Geodesy and Remote SensingHelmholtz Centre Potsdam GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations