Atmospheric Effects on Gravity Space Missions

  • Maria Karbon
  • Johannes Böhm
  • Dudy D. Wijaya
  • Harald Schuh
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

The varying atmosphere exerts two disturbing forces on the gravity signal: first the so-called direct effect or Newtonian attraction, where the object in questions is attracted by the atmospheric mass itself; and second the indirect effect or atmospheric loading, where the overlying atmospheric mass has a deforming effect on the Earth’s surface, also changing the measured gravity signal. In satellite gravity missions, these short-period signals cause aliasing effects in the gravity field determination and their elimination is indispensable. For the determination of the required atmospheric gravity field coefficients, it is state of the art to use high-resolution numerical weather models, which take into account the three-dimensional distribution of the atmospheric mass. In this part of the book, we address many relevant issues, including the theoretical fundamentals of the Earth’s gravity field and its description using spherical harmonics, as well as the basics of the atmospheric pressure distribution. A short overview of the gravity satellite missions of the last decade like GRACE (Gravity Recovery and Climate Experiment) is given and the impact of the atmosphere on the satellite measurements is examined. We present a descriptions of the oceanic mass response to overlying atmospheric pressure and of the models used for de-aliasing of atmospheric effects.

References

  1. J. P. Boy and B. F. Chao. Precise evaluation of atmospheric loading effects on earth’s time-variable gravity field.Journal of Geophysical Research, 110, B08412, doi:10.1029/2002JB002333, 2005.
  2. J. P. Boy, P. Gegout, and J. Hinderer. Reduction of surface gravity data from global atmospheric pressure loading. Geophysics Journal International, 149, pp 534–545, 2001.Google Scholar
  3. S. R. Dickman. Theoretical investigation of the oceanic inverted barometer hypothesis. Geophysical Research, 93, pp 14.941-14.946, 1988.Google Scholar
  4. H. Dobslaw and M. Thomas. Simulation and observation of global ocean mass anomalies. Journal of Geophysical Research, 112, C05040, 2007.Google Scholar
  5. N. Ekholm. Über die Höhe der homogenen Atmosphäre und die Masse der Atmosphäre. Meteorologische Zeitschrift, 19, pp 249–260, 1902.Google Scholar
  6. W. E. Farrell. Deformation of the Earth by Surface Loads. Reviews of Geophysics and Space Physics, 10, 3, pp. 761–797, 1972.Google Scholar
  7. F. Flechtner. AOD1B Product Description Document for Product Releases 01 to 04 (rev. 3.1, April 13, 2007). Technical report, GFZ, 2007.Google Scholar
  8. Th. Gruber, e.motion Team, and NGGM Team. Recent Studies on Future Gravity Field Missions in Europe: e.motion vs. NGGM. GRACE Science Team Meeting: GRACE Follow-On and Data, Continuity, 2011.Google Scholar
  9. Th. Gruber, Th. Peters, and L. Zenner. The Role of the Atmosphere for Satellite Gravity Field Missions. Observing our Changing Earth, International Association of Geodesy Symposia 133, ed. by M. Sideris, Springer-Verlag Berlin Heidelberg, 2009.Google Scholar
  10. Robert L. Higdon. A comparison of two formulations of barotropic - baroclinic splitting for layered models of ocean circulation. Ocean Modelling, 24, 1–2, pp 29–45, 2008.Google Scholar
  11. N. Hirose, I. Fukumori, V. Zlotnicki, and R. M. Ponte. High-frequency barotropic response to atmospheric disturbances: Sensitivity to forcing, topography, and friction. Journal of Geophysical Research, 2001.Google Scholar
  12. B. Hofmann-Wellenhof and H. Moritz. Physical Geodesy. Springer Wien New York, 2005.Google Scholar
  13. J. W. Hurrell and H. van Loon. Decadal variations in climate associated with the north atlantic oscillation. Climatic Change, 36, pp 301–326, 1997.Google Scholar
  14. M.J. McPhaden. El Niño and La Niña: Causes and Global Consequences. Encyclopedia of Global Environmental Change, Vol 1, John Wiley and Sons, LTD., Chichester, UK, pp 353–370, 2002.Google Scholar
  15. R. Ponte and P. Gaspar. Regional Analysis of the Inverted Barometer Effect over the Global Ocean Using TOPEX/POSEIDON Data and Model results.Journal of Geophysical Research, 104, C7, 15587–15601, 1999.Google Scholar
  16. W. Rabbel and J. Zschau. Static deformation and gravity changes at the earth’s surface due to atmospheric loading.Journal of Geophysics, 56, 81–99, 1985.Google Scholar
  17. C. Reigber, H. Luehr, and P. Schwintzer. CHAMP mission status. Advanced Space Research, 30(2), 129–134, 2002.Google Scholar
  18. R. Rummel, J. Müller, H. Oberndorfer, N. Sneeuw. Satellite Gravity Gradiometry with GOCE. Towards an Integrated Global Geodetic Observing System (IGGOS), IAG, Symposium 120, 66–72, 2000.Google Scholar
  19. S. Swenson and J. Wahr. Estimated Effects of the Vertical Structure of Atmospheric Mass on the Time- Variable Geoid.Journal of Geophysical Research, 107, 2194, doi:10.1029/2000JB000024, 2002.
  20. B. Tapley, S. Bettadput, M. Watkins, and C. Reigber. The Gravity recovery and Climate Experiment: Mission overview and early results. Geophysical research Letters, 31, L09607, doi:10.1029/2004GL019920, 2004.
  21. M. Thomas. Ocean induced variations of Earth’s rotation - Results from a simultaneous model of global circulation and tides. PhD thesis, Univ. of Hamburg, Germany, 2002.Google Scholar
  22. W. Torge.Gravimetry. Walter de Gruyter-Berlin-New York, ISBN: 3-11-010702-3, 1989.Google Scholar
  23. K.E. Trenberth and C.J. Guillemot. The total Mass of the Atmosphere. Journal of Geophysical Research, 99, D11, 23079–23088, 1994.Google Scholar
  24. K.E. Trenberth and L. Smith. The Mass of the Atmosphere: A Constraint on Global Analyses.Journal of Climate, 18, 6, 864–875, 2005.Google Scholar
  25. I. Velicogna, J. Wahr, and H. Van den Dool. Can Surface Pressure be used to remove atmospheric contributions from GRACE data with sufficient accuracy to recover hydrological signals? Journal of Geophysical Research, 106, B8, 16415–16434, 2001.Google Scholar
  26. L. Völgyesi. Geodetic applications of torsion balance measurements in Hungary. Reports on Geodesy, Warsaw University of Technology, 57, 2, 203–212, 2001.Google Scholar
  27. J. Wahr, M. Molenaar, and F. Bryan. Time variability of the Earth’s gravity Field: hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research, 103, 30, 205–230, 1998.Google Scholar
  28. R. J. Warburton and J. M. Goodkind. The influence of barometric pressure fluctuations on gravity. Geophys. J. Roy. Astron. Soc., 48, 281–292, 1977.Google Scholar
  29. M. M. Watkins, F. Flechtner, and B. D. Tapley. Status of the GRACE Follow-On Mission. American Geophysical Union, Fall Meeting 2010, abstract G44A–01, 2010.Google Scholar
  30. C. Wunsch and D. Stammer. Atmospheric loading and the oceanic ’inverted barometer’ effect. Reviews of Geophysics, 35, 1, pp 79–107, 1997.Google Scholar
  31. N. Yu, J.M. Kohel, J.R. Kellogg, and L. Maleki. Development of an atom-interferometer gravity gradiometer for gravity measurements from Space. Appl. Phys. B 84, 647–652 (2006), doi:10.1007/s00340-006-2376-x, 2006.
  32. L. Zenner, T. Gruber, A. Jäggi, and G. Beutler. Propagation of atmospheric model errors to gravity potential harmonics - Impact on GRACE De-Aliasing. Geophysical Journal International, 182(2), 797–807, 2010.Google Scholar
  33. L. Zenner, T. Gruber, G. Beutler, A. Jäggi, F. Flechtner, T. Schmidt, J. Wickert, E. Fagiolini, G. Schwarz, and T. Trautmann. Using Atmospheric Uncertainties for GRACE De-Aliasing - First Results. Geodesy for Planet Earth, International Association of Geodesy Symposia, Springer, 147–152, ISBN 987-3-642-20337-4, 2011.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maria Karbon
    • 1
  • Johannes Böhm
    • 2
  • Dudy D. Wijaya
    • 3
  • Harald Schuh
    • 4
  1. 1.Section 1.1 GPS/Galileo Earth ObservationsHelmholtz Centre Potsdam GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria
  3. 3.Geodesy Research GroupInstitute of Technology BandungBandung-West JavaIndonesia
  4. 4.Department 1 Geodesy and Remote SensingHelmholtz Centre Potsdam GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations