Atmospheric Pressure Loading

  • Dudy D. Wijaya
  • Johannes Böhm
  • Maria Karbon
  • Hana Kràsnà
  • Harald Schuh
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


Loading of the Earth’s crust due to variations of global atmosphere pressure can displace the positions of geodetic sites by more than 1 cm both vertically and horizontally on annual to sub-diurnal time scales, and thus has to be taken into account in the analysis of space geodetic observations. This part of the book discusses methods for the calculation of the displacements. In particular, it summarizes the simple approach with regression coefficients between surface pressure and the vertical displacement and the more rigorous geophysical approach with load Love numbers and Green’s functions. Furthermore, we describe the special treatment of the thermal tides (S1 and S2), the importance of the reference pressure, as well as the inverted barometer hypothesis for the oceans. Finally, we present space geodetic results with the application of those correction models for the analysis of Very Long Baseline Interferometry observations.


Global Navigation Satellite System Global Navigation Satellite System Very Long Baseline Interferometry Atmospheric Pressure Loading Satellite Laser Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the reviewer, Jean-Paul Boy, for checking this part of the book and providing very valuable suggestions. We are grateful for the financial support from the Austrian Science Fund (FWF, P20902-N10).


  1. T. Aso. An overview of the terdiurnal tide observed by polar radars and optic. Adv. Polar Upper Atmos. Res., 17: 167–176, 2003.Google Scholar
  2. D. Bock, R. Noomen, and H.G. Scherneck. Atmospheric pressure loading displacement of SLR stations. J. Geodyn., 39: 247–266, 2005.Google Scholar
  3. J. Böhm, R. Heinkelmann, P.J. Mendes, and H. Schuh. Short note: a global model of pressure and temperature for geodetic applications. J. of Geod., 81 (10):679–683, doi: 10.1007/s00190-007-0135-3, 2007.
  4. J.P. Boy and B.F. Chao. Precise evaluation of atmospheric loading effects on earth’s time-variability gravity field. J. Geophys. Res., 110: B08412, doi: 10.1029/2002JB002333, 2009.
  5. R. Dach, J. Böhm, S. Lutz, P. Steigenberger, and G. Beutler. Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis. J. Geod., 85: 75–91, doi: 10.1007/s00190-010-0417-z, 2011.Google Scholar
  6. A. Dai and J. Wang. Diurnal and semidiurnal tides in global surface pressure fields. J. of Atm. Science, 56: 3874–3891, 1999.Google Scholar
  7. A. Dell’Aquila, V. Lucarni, and P.M. Ruti. Hayashi spectra of the northern hemisphere mid-latitude atmospheric variability in the NCEP-NCAR and ECMWF reanalysis. Climate Dynamics, 25: 639–652, 2005.Google Scholar
  8. W.E. Farrell. Deformation of the earth by surface loads. Rev. Geophys., 10: 751–797, 1972.Google Scholar
  9. J. Geng, S.D.P. Williams, F.N. Teferle, and A.H. Dodson. Detecting storm surge loading deformations around the southern North Sea using subdailly GPS. Geophys. J. Int., 191: 569–578 doi: 10.1111/j.1365-246X.2012.05656.x, 2012.Google Scholar
  10. B. Haurwitz and A.D. Cowley. The diurnal and semidiurnal barometric oscillations, global distribution and annual variation. Pure Appl. Geophys., 102: 193–222, 1973.Google Scholar
  11. B. Hofmann-Wellenhof and H. Moritz. Physical Geodesy. pringer, Wien - New York, 2005.Google Scholar
  12. K. Kaniuth and S. Vetter. Estimating atmospheric pressure loading regression coefficients from gps observations.GPS Solut., 10: 126–134, doi: 10.1007/s10291-005-0014-4, 2006.Google Scholar
  13. D.S. MacMillan and J.M. Gipson. Atmospheric pressure loading parameters from very long baseline interferometry observations. J. Geophys. Res., 99 (B9): 18,081–18,087, doi: 10.1029/94JB01190, 1994.
  14. G. Petit and B. Luzum. IERS Conventions 2010. Technical Report 36, IERS Technical Note, 2010.Google Scholar
  15. L. Petrov and J.P. Boy. Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J. Geophys. Res., 109 (B03405): 1–14, doi: 10.1029/2003JB002500, 2004.
  16. R.M. Ponte and R.D. Ray. Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides. Geophys. Res. Lett., 29 (24): 2153–2156, doi: 10.1029/2002GL016340, 2002.Google Scholar
  17. W. Rabbel and J. Zschau. Static deformation and gravity changes at the earth’s surface due to atmospheric loading. J. Geophys., 56:81–99, 1985.Google Scholar
  18. R.D. Ray and R.M. Ponte. Barometric tides from ECMWF operational analyses. Ann. Geophys., 21:1897–1910, 2003.Google Scholar
  19. H. Schuh, M. Schindelegger, D.D. Wijaya, J. Böhm, and D.A. Salstein. Memo: A method for the definition of global reference pressure., 2009
  20. P. Tregoning and T.M. van Dam. Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys. Res. Lett., 32:L22310, doi: 10.1029/2005GL024104, 2005.
  21. P. Tregoning and C. Watson. Atmospheric effects and spurious signals in GPS analysis. J. Geophys. Res., 114 (B09403, 15 PP.): doi: 10.1029/2009JB006344, 2009.
  22. T.M. van Dam, G. Blewitt, and M.B. Heflin. Atmospheric pressure loading effects on global positioning system coordinate determinations. J. Geophys. Res., 99 (B12): 23,939–23,950, doi: 10.1029/94JB02122, 1994.
  23. T.M. van Dam and J. Wahr. Displacements of the earth’s surface due to atmospheric loading: Effects on gravity and baseline measurements. J. Geophys. Res., 92 (B2): 1281–1286, doi: 10.1029/JB092iB02p01281, 1987.Google Scholar
  24. T.M. van Dam and T.A. Herring. Detection of atmospheric pressure loading using very long baseline interferometry measurements. J. Geophys. Res., 99 (B3): 4505–4517, doi: 10.1029/93JB02758, 1994.Google Scholar
  25. T.M. van Dam, Z. Altamimi, X. Collilieux, and J. Ray. Topographycally induced height errors in predicted atmospheric loading effects. J. Geophys. Res., 115 (B07415, 10 PP.): doi: 10.1029/2009JB006810, 2010.
  26. H. van den Dool, S. Saha, J. Schemm, and J. Huang. A temporal interpolation method to obtain hourly atmospheric surface pressure tides in reanalysis 1979–1995. J. Geophys. Res., 102 (D18): 22,013–22,024, doi: 10.1029/97JD01571, 1997.
  27. J.M. Wahr. The effects of the atmosphere and oceans on the Earth’s wobble and on the seasonal variations in the length of day - II. Results. Geophysical Journal of the Royal Astronomical Society, 74: 451–487, 1983.Google Scholar
  28. J.M. Wallace and P.V. Hobbs. Atmospheric science: an introductory survey. Academic Press, \(2^{\rm {nd}}\) edition, 2006.Google Scholar
  29. D. Wunsch and D. Stammer. Atmospheric loading and the oceanic “inverted barometer” effects. Rev. Geophys., 35: 79–107, 2010.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dudy D. Wijaya
    • 1
  • Johannes Böhm
    • 2
  • Maria Karbon
    • 3
  • Hana Kràsnà
    • 2
  • Harald Schuh
    • 4
  1. 1.Geodesy Research GroupInstitute of Technology BandungBandung-West JavaIndonesia
  2. 2.Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria
  3. 3.Section 1.1 GPS/Galileo Earth ObservationsHelmholtz Centre Potsdam GFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Department 1 Geodesy and Remote SensingHelmholtz Centre Potsdam GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations