Geodetic and Atmospheric Background

  • Johannes Böhm
  • David Salstein
  • Mahdi M. Alizadeh
  • Dudy D. Wijaya
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


This first part in the book on atmospheric effects in space geodesy provides a review of the basic structure, composition, and workings of the atmosphere and serves as a general background needed to help the reader understand the material in later parts. Its large diversity of topics would usually not be included in one paper, but since this work is designed as a textbook in a university geodesy course, we intentionally discuss this broad variety of topics at the outset. The reader may wish to skip this part and only revisit it as references and interest suggest. Here we cover the following topics: After an overview of atmospheric effects in space geodesy, we briefly review physical terminology and meteorological quantities. Then, we discuss gas laws and atmospheric statics, and we introduce specific topics like reference pressure, atmospheric tides, and the inverted barometer hypothesis, all of which reappear in later parts. After an overview of atmospheric layers and circulation, we concentrate on the ionosphere, highlighting ionization and recombination processes and introducing the concept of Chapman layer profiles. Finally, we discuss height- and latitude-dependent spatial variations as well as regular and non-regular temporal variations in the ionosphere.


Global Navigation Satellite System Global Navigation Satellite System Total Electron Content Very Long Baseline Interferometry Water Vapor Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Austrian Science Fund for supporting their work within project GGOS Atmosphere (P20902-N10). Support to David Salstein was also provided by the US National Science Foundation, under a series of grants, most recently ATM-0913780.


  1. C. Aghanajafi. Aeronomy. KNToosi University of Technology Academic Press, 2000.Google Scholar
  2. M. Alizadeh, D.D. Wijaya, T. Hobiger, R. Weber, and H. Schuh. Ionospheric effects on microwave signals. In J. Böhm and H. Schuh, editors, Atmospheric effects in space geodesy. Springer-Verlag, 2013. this book.Google Scholar
  3. J.-P. Boy and B.F. Chao. Precise evaluation of atmospheric loading effects on Earth’s time-variable gravity field. J. Geophys. Res., 110, B08412, 2005.Google Scholar
  4. A. Brzeziński, C. Bizouard, and S.D. Petrov. Influence of the atmosphere on Earth rotation: what new can be learned from the recent atmospheric angular momentum estimates? Surveys in Geophysics 23:33–69, 2002.Google Scholar
  5. S. Chapman and R.S. Lindzen. Atmospheric Tides: Thermal and Gravitational. Reidel, Dordrecht, The Netherlands, 1970.Google Scholar
  6. J.L. Chen, C.R. Wilson, R.J. Eanes, and R.S. Nerem. Geophysical interpretation of observed geocenter variations. J. Geophys. Res., 104, B2:2683–2690, 1999.Google Scholar
  7. T.E. Cravens. Ionosphere. In Encyclopedia of Planetary Science, pages 354–359, Springer-Verlag, 1997.Google Scholar
  8. K. Davies. Ionospheric Radio, Volume 31 of IEE Electromagnetic Waves Series. Peter Peregrinus Ltd, London, 1990.Google Scholar
  9. J. Feltens, M. Angling, N. Jakowski, C. Mayer, M.M. Hoque, H. Hernández-Pajares, A. García-Rigo, R. Orús-Perez, and A. Aragón-Angel. Analysis of the state of the art ionosphere modelling and observation techniques. Technical Report OPS-SYS-TN-0017-OPS-GN, Iss. 1/0, ESA/ESOC, June 2009.Google Scholar
  10. F. Flechtner. Grace AOD1B product description documents, rev.3.1, Apr. 13, 2007. Technical report, Department 1: Geodesy and Remote Sensing, GeoForschungzentrum, Potsdam, 2007.Google Scholar
  11. M. Förster and N. Jakowski. Geomagnetic storm effects on the topside ionosphere and plasmasphere: A compact tutorial and new results. Surveys in Geophysics, 21(1):47–87, 2000.Google Scholar
  12. A.E. Gill. Atmosphere-Ocean Dynamics. Academic Press, New York, 1982.Google Scholar
  13. J.M. Goodman and J. Aarons. Ionospheric effects on modern electronic systems. Proc. IEEE, 78(3), 1990.Google Scholar
  14. J.K. Hargreaves. The Solar-Terrestrial Environment - An Introduction To Geospace - The Science of the Terrestrial Upper Atmosphere, Ionosphere, And Magnetosphere. Cambridge University Press, May 1995.Google Scholar
  15. M. Hernández-Pajares, J.M. Juan, and J. Sanz. Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis. J. of Geophys. Res., 111(A07S11), 2006.Google Scholar
  16. M.C. Ho, A.J. Mannucci, U.J. Lindquister, X. Pi, and B. Tsurutani. Global ionosphere perturbations monitored by the worldwide GPS network. Geophys. Res. Lett., 23:3219–3222, 1996.Google Scholar
  17. T. Hobiger. VLBI as tool to probe the ionosphere. PhD thesis, Vienna Univ. of Technology, Austria, 2005.Google Scholar
  18. T. Hobiger, R. Ichikawa, Y. Koyama, and T. Kondo. Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J. Geophys. Res., 113: D20302, 2008.Google Scholar
  19. K.P. Hoinka. Mean global surface pressure series evaluated from ECMWF reanalysis data. Q.J.R. Meteorol. Soc., 124:2291–2297, 1998.Google Scholar
  20. M.M. Hoque and N. Jakowski. A new global model for the ionospheric F2 peak height for radio wave propagation. Ann. Geophys., 30:797–809, 2012.Google Scholar
  21. R.D. Hunsucker and J.K. Hargreaves. The high latitude ionosphere and its effects on radio propagation. Cambridge University Press, 2002.Google Scholar
  22. International Geomagnetic Reference Field IGRF. World data center for geomagnetism, Kyoto, 2011.
  23. N. Jakowski and B. Lazo. Significant events in TEC measurements between 20 March and 5 May, 1976. In Collected data reports for STIP interval II, 20 March - 5 May 1976, Volume 61, pages 432–435. UAG, 1977.Google Scholar
  24. M. Karbon, J. Böhm, D.D. Wijaya, and H. Schuh. Atmospheric effects on gravity space missions. In J. Böhm and H. Schuh, editors, Atmospheric effects in space geodesy. Springer-Verlag, 2013. this book.Google Scholar
  25. M.C. Kelly. The Earth ionosphere: plasma physics and electrodynamics. Academic Press (San Diego), 1989.Google Scholar
  26. H. Kraus. Die Atmosphäre der Erde: eine Einführung in die Meteorologie. Springer, 2004.Google Scholar
  27. C. Mayer and N. Jakowski. Enhanced e-layer ionization in the auroral zones observed by radio occultation measurements onboard CHAMP and FORMOSAT-3/COSMIC. Annales Geophysicae, 27:1207–1212, 2009.Google Scholar
  28. D.B. Muldrew. F-layer ionization trough deduced from Alouette data. J. Geophys. Res., 70:2635–2650, 1965.Google Scholar
  29. T. Nilsson, J. Böhm, D.D. Wijaya, A. Tresch, V. Nafisi, and H. Schuh. Path delays in the neutral atmosphere. In J. Böhm and H. Schuh, editors, Atmospheric effects in space geodesy. Springer-Verlag, 2013. this book.Google Scholar
  30. J.P. Peixoto and A.H. Oort. The Physics of Climate. American Institute of Physics, New York, NY, USA, 1992.Google Scholar
  31. L. Petrov and J.-P. Boy. Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J. Geophys. Res., 109, B03405, 2004.Google Scholar
  32. W. Rabbel and H. Schuh. The influence of atmospheric loading on VLBI-experiments. J. Geophys., 59:164–170, 1986.Google Scholar
  33. W. Rabbel and J. Zschau. Static deformation and gravity changes at the Earth surface due to atmospheric loading. J. Geophys., 56:81–99, 1985.Google Scholar
  34. J.A. Ratcliffe. An introduction to the ionosphere and magnetosphere. Cambridge University Press, 1972.Google Scholar
  35. J. Rhoads, S. Malhotra, D. Arjun, S. Hyron, and J. Buell. First results from the large-area lyman alpha survey. The Astrophysical Journal, 545:85–88, 2000.Google Scholar
  36. H. Rishbeth and O.K. Garriott. Introduction to Ionospheric Physics. New York, Academic Press, 1969.Google Scholar
  37. C. Rocken, S. Sokolovskiy, J.M. Johnson, and D. Hunt. Improved mapping of tropospheric delays. Journal of Atmospheric and Oceanic Technology, 18:1205–1213, 2001.Google Scholar
  38. M. Rothacher, G. Beutler, A. Donnellan, J. Hinderer, C. Ma, C. Noll, J. Oberst, M. Pearlman, H.-P. Plag, B. Richter, T. Schöne, G. Tavernier, and P.L. Woodworth. The future Global Geodetic Observing System, Chapter 9. Springer, 2009.Google Scholar
  39. D. Salstein. Mean properties of the atmosphere, pages 19–49. Van Nostrand Reinhold, New York, NY, USA, 1995.Google Scholar
  40. S. Schaer. Mapping and predicting the Earth’s ionosphere using the Global Positioning System. PhD thesis, Bern University, Switzerland, 1999.Google Scholar
  41. M. Schindelegger, S. Böhm, J. Böhm, and H. Schuh. Atmospheric effects on Earth rotation. In J. Böhm and H. Schuh, editors, Atmospheric effects in space geodesy. Springer-Verlag, 2013. this book.Google Scholar
  42. H. Schuh and J. Böhm. Very long baseline interferometry for geodesy and astrometry. In G. Xu, editor, Science of Geodesy II, pages 185–227. Springer, 2012.Google Scholar
  43. H. Schuh, R. Dill, H. Greiner-Mai, H.-J. Kutterer, J. Müller, A. Nothnagel, B. Richter, M. Rothacher, U. Schreiber, and M. Soffel. Erdrotation und globale dynamische Prozesse. Technical report, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, 2003.Google Scholar
  44. P.L. Timleck and G.L. Nelms. Electron densities less than 100 electron \(cm ^{-3}\) in the topside ionosphere. Proceedings of the IEEE, 57(6):1164–1171, 1969.Google Scholar
  45. S. Todorova. Combination of space geodetic techniques for global mapping of the ionosphere. PhD thesis, Vienna University of Technology, Austria, 2008.Google Scholar
  46. K.E. Trenberth and L. Smith. The mass of the atmosphere: A constraint on global analysis. J. Climate, 18:864–875, 2005.Google Scholar
  47. T.M. van Dam and T.A. Herring. Detection of atmospheric pressure loading using very long baseline interferometry. J. Geophys. Res., 99, 14505–14518, 1994.Google Scholar
  48. T.M. van Dam and J. Wahr. Displacements of the Earth’s surface due to atmospheric loading. J. Geophys. Res., 92, 1281–1286, 1987.Google Scholar
  49. H. Volland. Atmospheric Tidal and Planetary Waves. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.Google Scholar
  50. H. Volland. Atmospheric Tides. Springer-Verlag, Berlin Heidelberg, 1997.Google Scholar
  51. R.C. Whitten and I.G. Poppoff. Fundamentals of Aeronomy. John Wiley and Sons, Inc., 1971.Google Scholar
  52. D.D. Wijaya, J. Böhm, M. Karbon, and H. Schuh. Atmospheric pressure loading. In J. Böhm and H. Schuh, editors, Atmospheric effects in space geodesy. Springer-Verlag, 2013. this book.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Johannes Böhm
    • 1
  • David Salstein
    • 2
  • Mahdi M. Alizadeh
    • 3
  • Dudy D. Wijaya
    • 4
  1. 1.Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria
  2. 2.Atmospheric and Environmental ResearchLexingtonUSA
  3. 3.Department for Geodesy and Geoinformation ScienceTechnical University of BerlinBerlinGermany
  4. 4.Geodesy Research GroupInstitute of Technology BandungBandung-West JavaIndonesia

Personalised recommendations