Designer Nucleic Acid-Based Devices in Nanomedicine

Chapter

Abstract

Structural DNA nanotechnology utilizes key properties of DNA such as its persistence length and base pairing specificity to build molecularly identical architectures on the nanoscale. Of particular interest are the family of well-defined three-dimensional architectures including various polyhedra, boxes, tubes, and DNA-based dendrimers. Such scaffolded DNA architectures have recently been explored as nanoscale containers for functional molecules and as molecular breadboards to site specifically display the latter.

These DNA nanostructures have also been shown to interact specifically with cell-surface markers and trigger signaling pathways in a gamut of biological systems through specific targets. Such studies indicate the emerging potential of DNA structures in nanomedicine that could enable targeted delivery of molecular payloads within living systems.

Keywords

Structural DNA nanotechnology DNA polyhedra Encapsulation Drug delivery 

References

  1. Aldaye FA, Sleiman HF (2007) Modular access to structurally switchable 3D discrete DNA assemblies. J Am Chem Soc 129:13376–13377PubMedCrossRefGoogle Scholar
  2. Aldaye FA, Palmer AL, Sleiman HF (2008) Assembling materials with DNA as the guide. Science 321:1795–1799PubMedCrossRefGoogle Scholar
  3. Andersen FF, Knudsen B, Oliveira CL et al (2008) Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic Acids Res 36:1113–1119PubMedCrossRefGoogle Scholar
  4. Andersen ES, Dong M, Nielsen MM et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76PubMedCrossRefGoogle Scholar
  5. Bhatia D, Mehtab S, Krishnan R et al (2009) Icosahedral DNA nanocapsules by modular assembly. Angew Chem Int Ed 48:4134–4137CrossRefGoogle Scholar
  6. Bhatia D, Sharma S, Krishnan Y (2011a) Synthetic, biofunctional nucleic acid-based molecular devices. Curr Opin Biotechnol 22:475–484PubMedCrossRefGoogle Scholar
  7. Bhatia D, Surana S, Chakraborty S et al (2011b) A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat Commun 2:339PubMedCrossRefGoogle Scholar
  8. Chang M, Yang CS, Huang DM (2011) Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5:6156–6163PubMedCrossRefGoogle Scholar
  9. Chen J, Seeman NC (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–633PubMedCrossRefGoogle Scholar
  10. Douglas SM, Dietz H, Liedl T et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418PubMedCrossRefGoogle Scholar
  11. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834PubMedCrossRefGoogle Scholar
  12. Erben CM, Goodman RP, Turberfield AJ (2006) Single-molecule protein encapsulation in a rigid DNA cage. Angew Chem Int Ed 45:7414–7417CrossRefGoogle Scholar
  13. Goodman RP, Schaap IAT, Tardin CF et al (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665PubMedCrossRefGoogle Scholar
  14. Goodman RP, Heilemann M, Doose S et al (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3:93–96PubMedCrossRefGoogle Scholar
  15. Hamblin GD, Carneiro KM, Fakhoury JF et al (2012) Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J Am Chem Soc 134:2888–2891PubMedCrossRefGoogle Scholar
  16. He Y, Ye T, Su M et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201PubMedCrossRefGoogle Scholar
  17. Keum JW, Ahn JH, Bermudez H (2011) Design, assembly, and activity of antisense DNA nanostructures. Small 7:3529–3535PubMedCrossRefGoogle Scholar
  18. Ko S, Liu H, Chen Y et al (2008) DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules 9:3039–3043PubMedCrossRefGoogle Scholar
  19. Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed 50:3124–3156CrossRefGoogle Scholar
  20. Lee H, Lytton-Jean AKR, Che Y et al (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393PubMedCrossRefGoogle Scholar
  21. Li Z, Wei B, Nangreave J et al (2009) A replicable tetrahedral nanostructure self-assembled from a single DNA strand. J Am Chem Soc 131:13093–13098PubMedCrossRefGoogle Scholar
  22. Li J, Pei H, Zhu B et al (2011) Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5:8783–8789PubMedCrossRefGoogle Scholar
  23. Lin C, Rinker S, Wang X et al (2008) In vivo cloning of artificial DNA nanostructures. Proc Natl Acad Sci USA 105:17626–17631PubMedCrossRefGoogle Scholar
  24. Liu X, Xu Y, Yu T et al (2012) A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett 12:4254–4259PubMedCrossRefGoogle Scholar
  25. Lo PK, Karam P, Aldaye FA et al (2010) Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat Chem 2:319–328PubMedCrossRefGoogle Scholar
  26. Martin E, Herdewijn P, Matusda A et al (eds) Curr Protoc Nucleic Acid Chem. doi:10.1002/0471142700Google Scholar
  27. Mei Q, Wei X, Su F (2011) Stability of DNA origami nanoarrays in cell lysate. Nano Lett 11:1477–1482PubMedCrossRefGoogle Scholar
  28. Modi S, Bhatia D, Simmel FC et al (2010) Structural DNA nanotechnology: from bases to bricks, from structure to function. J Phys Chem Lett 1:1994–2005CrossRefGoogle Scholar
  29. Pinheiro V, Han D, Shih WM et al (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772PubMedCrossRefGoogle Scholar
  30. Sacca B, Neimeyer CM (2012) DNA origami: the art of folding DNA. Angew Chem Int Ed 51:58–66CrossRefGoogle Scholar
  31. Schüller VJ, Heidegger S, Sandholzer N et al (2011) Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5:9696–9702PubMedCrossRefGoogle Scholar
  32. Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621PubMedCrossRefGoogle Scholar
  33. Thomas JA, Buchsbaum RN, Zimniak A et al (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218PubMedCrossRefGoogle Scholar
  34. Walsh AS, Yin H, Erben CM et al (2011) DNA cage delivery to mammalian cells. ACS Nano 5:5427–5432PubMedCrossRefGoogle Scholar
  35. Zhang J, Seeman NC (1994) Construction of DNA-trucated octahedron. J Am Chem Soc 116:1661–1669CrossRefGoogle Scholar
  36. Zhang C, He Y, Su M et al (2009) Faraday Discuss 143:221–233PubMedCrossRefGoogle Scholar
  37. Zhang C, Su M, He Y et al (2010) Exterior modification of a DNA tetrahedron. Chem Commun 46:6792–6794CrossRefGoogle Scholar
  38. Zhang C, Tian C, Guo F et al (2012) DNA-directed three-dimensional protein organization. Angew Chem Int Ed 51:3382–3385CrossRefGoogle Scholar
  39. Zhao Z, Jacovetty EL, Liu Y et al (2011) Encapsulation of gold nanoparticles inside a DNA origami cage. Angew Chem Int Ed 50:2041–2044CrossRefGoogle Scholar
  40. Zimmermann J, Cebulla MP, Mönninghoff S et al (2008) Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C(3 h) linkers. Angew Chem Int Ed 47:3626–3630CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia

Personalised recommendations