Advertisement

Volcanic Lakes pp 323-339 | Cite as

How Steep Is My Seep? Seepage in Volcanic Lakes, Hints from Numerical Simulations

  • Micol Todesco
  • Dmitri RouwetEmail author
  • Massimo Nespoli
  • Maurizio Bonafede
Chapter
Part of the Advances in Volcanology book series (VOLCAN)

Abstract

The existence and survival of volcanic lakes require the accomplishment of a delicate balance between meteoric recharge, evaporation, and water loss by infiltration within the volcanic edifice, commonly referred to as seepage. A deep-seated, volcanic component may participate to a variable extent to the lake’s evolution, depending on volcanic activity. In this work, we apply a numerical model of hydrothermal fluid circulation to study the interaction between the hot volcanic gases and the shallow lake water. We focus on the conceptual model developed for Poás volcano (Costa Rica), where a shallow magma intrusion drives the hydrothermal activity underneath and around the crater lake. Numerical simulations are carried out to assess the role of relevant system properties, including rock permeability, reservoir conditions, lake geometry, and meteoric recharge. Our results suggest that vertical seepage can be severely hindered by the ascent of volcanic gases, whereas horizontal infiltration through the vertical lake walls may ensure a long-term water loss. Our simulations also show that the permeability distribution, especially around the lake, determines the overall pattern of circulation affecting the development and spatial distribution of hot springs and fumaroles, and ultimately controlling the evolution of the lake.

Keywords

Active crater lake Numerical simulations Seepage TOUGH2 modeling Hydrothermal circulation 

Supplementary material

Supplementary material 1 (AVI 2540 kb)

Supplementary material 2 (AVI 2600 kb)

Supplementary material 3 (AVI 2724 kb)

References

  1. Bernard A, Mazot A (2004) Geochemical evolution of the young crater lake of Kelud volcano in Indonesia. In: Wanty, Seal II (eds) Water-rock interaction, pp 87–90Google Scholar
  2. Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales LD (1989) Energy budget analysis for Poás Crater lake—implications for predicting volcanic activity. Nature 339:370–373CrossRefGoogle Scholar
  3. Casertano L, Borgia A, Cigolini C, Morales LD, Montero W, Gomez M, Fernández JF (1987) An integrated dynamic model for the volcanic activity at Poás volcano, Costa Rica. Bull Volcanol 49:588–598CrossRefGoogle Scholar
  4. Christenson BW, Reyes AG, Young R, Moebis A, Sherburn S, Cole-Baker J, Britten K (2010) Cyclic processes and factors leading to phreatic eruption events: insights from the 25 September 2007 eruption through Ruapehu Crater lake, New Zealand. J Volcanol Geotherm Res 191:15–32. doi: 10.1016/j.jvolgeores.2010.01.008 CrossRefGoogle Scholar
  5. Fournier N, Rymer H, Williams-Jones G, Brenes J (2004) High-resolution gravity survey: investigation of subsurface structures at Poás volcano. Costa Rica Geophys Res Lett 31:L15602CrossRefGoogle Scholar
  6. Fournier N, Witham F, Moreau-Fournier M, Bardou L (2009) Boiling lake of Dominica, West Indies: high-temperature volcanic crater lake dynamics. J Geophys Res 114:B02203Google Scholar
  7. Funiciello R, Giordano G, De Rita D (2003) The Albano Maar lake (Colli Albani volcano, Italy): recent volcanic activity and evidence of pre-roman age catastrophic lahar events. J Volcanol Geotherm Res 123:43–61CrossRefGoogle Scholar
  8. Hurst AW, Bibby HM, Scott BJ, McGuinness MJ (1991) The heat source of Ruapehu Crater lake; deductions from the energy and mass balances. J Volcanol Geotherm Res 46:1–20CrossRefGoogle Scholar
  9. Hurst T, Hashimoto T, Terada A (this issue) Crater lake energy and mass balanceGoogle Scholar
  10. Martı́nez M, Fernández E, Valdés J, Barboza V, Van de Laat R, Duarte E, Malavassi E, Sandoval L, Barquero J, Marino T (2000) Chemical evolution and volcanic activity of the active crater lake of Poás volcano, Costa Rica, 1993–1997. J Volcanol Geotherm Res 97:127–141CrossRefGoogle Scholar
  11. Ohba T, Hirabayashi J-I, Nogami K (1994) Water, heat and chlorine budgets of the crater lake, Yugama at Kusatsu-Shirane volcano, Japan. Geochem J 28:217–231Google Scholar
  12. Oppenheimer C, Stevenson D (1989) Liquid sulphur lakes at Poás volcano. Nat News 342:790–793CrossRefGoogle Scholar
  13. Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 user’s guide, version 2.0. Paper LBNL-43134Google Scholar
  14. Rouwet D, Taran YA, Varley NR (2004) Dynamics and mass balance of El Chichón Crater lake. Mex Geofís Intern 43:427Google Scholar
  15. Rouwet D, Taran Y, Inguaggiato S, Varley N, Santiago SJA (2008) Hydrochemical dynamics of the “lake-spring” system in the crater of El Chichón volcano (Chiapas, Mexico). J Volcanol Geotherm Res 178:237–248CrossRefGoogle Scholar
  16. Rouwet D, Tassi F (2011) Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes. Ann Geophys. doi:10.4401/ag-5035Google Scholar
  17. Rowe G, Brantley SL, Fernández J, Borgia A (1995) The chemical and hydrologic structure of Poa´ s volcano, Costa Rica. J Volcanol Geotherm Res 64:233–267CrossRefGoogle Scholar
  18. Rowe GL Jr, Brantley SL, Fernández M, Fernández JF, Borgia A, Barquero J (1992) Fluid-volcano interaction in an active stratovolcano: the crater lake system of Poás volcano, Costa Rica. J Volcanol Geotherm Res 49:23–51CrossRefGoogle Scholar
  19. Rymer H, Cassidy J, Locke CA, Barboza M, Barquero J, Brenes J, Van der Laat R (2000) Geophysical studies of the recent 15-year eruptive cycle at Poas volcano, Costa Rica. J Volcanol Geotherm Res 97:425–442CrossRefGoogle Scholar
  20. Rymer H, Locke CA, Borgia A, Martínez M, Brenes J, Van der Laat R, Williams-Jones G (2009) Long term fluctuations in volcanic activity: implications for future environmental impact. Terra Nova 21:304–309CrossRefGoogle Scholar
  21. Sanford WE, Konikow LF, Rowe Jr GL, Brantley SL (1995) Groundwater transport of crater-lake brine at Poás volcano, Costa Rica. J Volcanol Geoth Res 64:269–293Google Scholar
  22. Takano B, Saitoh H, Takano E (1994) Geochemical implications of subaqueous molten sulfur at Yugama Crater lake, Kusatsu-Shirane volcano, Japan. Geochem J 28:199–216CrossRefGoogle Scholar
  23. Taran Y, Rouwet D (2008) Estimating thermal inflow to El Chichón crater lake using the energy-budget, chemical and isotope balance approaches. J Volcanol Geotherm Res 175:472–481CrossRefGoogle Scholar
  24. Terada A, Hashimoto T, Kagiyama T (2012) A water flow model of the active crater lake at Aso volcano, Japan: fluctuations of magmatic gas and groundwater fluxes from the underlying hydrothermal system. Bull Volcanol 1–15Google Scholar
  25. Terada A, Sudo Y (2012) Thermal activity within the western-slope geothermal zone of Aso volcano, Japan: development of a new thermal area. Geothermics 42:56–64CrossRefGoogle Scholar
  26. Todesco M, Rouwet D, Nespoli M, Mora-Amador RA (2012) To seep or not to seep? Some considerations regarding water infiltration in volcanic lakes. In: Proceedings, TOUGH symposium 2013Google Scholar
  27. Vaselli O, Tassi F, Minissale A et al (2003) Fumarole migration and fluid geochemistry at Poás volcano (Costa Rica) from 1998 to 2001. Geol Soc London Spec Publ 213:247–262. doi: 10.1144/GSL.SP.2003.213.01.15 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Micol Todesco
    • 1
  • Dmitri Rouwet
    • 1
    Email author
  • Massimo Nespoli
    • 1
    • 2
  • Maurizio Bonafede
    • 2
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaBolognaItaly
  2. 2.Università degliBolognaItaly

Personalised recommendations