Advertisement

Volcanic Lakes pp 261-288 | Cite as

Molten Sulfur Lakes of Intraoceanic Arc Volcanoes

  • C. E. J. de RondeEmail author
  • W. W. ChadwickJr
  • R. G. Ditchburn
  • R. W. Embley
  • V. Tunnicliffe
  • E. T. Baker
  • S. L. Walker
  • V. L. Ferrini
  • S. M. Merle
Chapter
Part of the Advances in Volcanology book series (VOLCAN)

Abstract

Intraoceanic arcs of the world are dominated by submarine volcanoes, many of which host active hydrothermal systems. A considerable number of the morphological features common to subaerial volcanoes are also present on the submarine edifices, including summit craters. Surprisingly, some of the craters, such as at Daikoku and Nikko volcanoes of the Mariana Arc, and Macauley Cone of the Kermadec Arc, are host to lakes of molten sulfur, both ancient and modern. These lakes, up to ~200 m in diameter, act as condensers of gases that derive from the underlying magmas. Volcanic vents beneath these lakes provide a steady outflow of hot gases that continuously generate molten sulfur. At Daikoku, an extraordinary lake of liquid sulfur is in constant convective and gas escape-driven motion. Smaller pools of molten sulfur occur on Nikko, and there is evidence of older, larger lakes on both this volcano and Macauley, based on the accumulation of large quantities of sulfur in the subsurface. The elemental S at these sites is produced largely by the reaction 2H2S + SO2 = 3S + 2H2O and the disproportionation of magmatic SO2. Anomalous concentrations of Au and Cu in the lakes are most likely transported by vapor.

Keywords

Intraoceanic arc volcanoes Submarine crater lakes Daikoku Nikko Macauley cone Elemental sulfur Trace elements Sulfur isotopes 

Notes

Acknowledgments

This paper was written while C de R was on sabbatical at NOAA/PMEL. A.G. Reyes, R.J. Stern and R.W. Henley are thanked for their discussion on volcanic lakes, sulfur, and magmas. K. Nakamura commented on an earlier draft of this paper. Reviews bv R.J. Arculus, D. Rouwet, and B.W. Christenson improved this contribution. The captain and crew of the research tender vessels R/V Thompson (2004), R/V Kaimikai-o-Kanaloa (2005) and R/V Melville (2006), and the ROV (ROPOS and Jason II) pilots and engineers, are thanked for careful and safe operations while at sea. Funding for C de R was from the Foundation for Research, Science and Technology (FRST) contract #C05X0406. Funding for the Submarine Ring of Fire expeditions was from the NOAA Ocean Exploration and NOAA Vents Programs. This is PMEL contribution #3942.

Supplementary material

Supplementary material 1 (MOV 20758 kb)

Supplementary material 2 (MOV 19794 kb)

Supplementary material 3 (MOV 22720 kb)

Supplementary material 4 (MOV 20907 kb)

Supplementary material 5 (MOV 20270 kb)

Supplementary material 6 (MOV 20228 kb)

Supplementary material 7 (MOV 18307 kb)

Supplementary material 8 (MOV 20585 kb)

Supplementary material 9 (MOV 21097 kb)

Supplementary material 10 (MOV 17879 kb)

Supplementary material 11 (MOV 18470 kb)

Supplementary material 12 (MOV 17763 kb)

Supplementary material 13 (MOV 17497 kb)

Supplementary material 14 (MOV 17789 kb)

271671_1_En_11_MOESM15_ESM.pdf (1 mb)
Supplementary material 15 (PDF 1059 kb)

References

  1. Baker ET, Tennant DA, Feely RA, Lebon GT, Walker SL (2001) Field and laboratory studies on the effect of particle size and composition on optical backscattering measurements in hydrothermal plumes. Deep-Sea Res 48:593–604CrossRefGoogle Scholar
  2. Baker ET, Massoth GJ, Nakamura K, Embley RW, de Ronde CEJ, Arculus RJ (2005) Hydrothermal activity on near-arc sections of back-arc ridges: results from the Mariana Trough and Lau Basin. Geochem Geophys Geosyst 6:Q09001. doi: 10.1029/2005GC000948 CrossRefGoogle Scholar
  3. Baker ET, Embley RW, Walker SL, Resing JA, Lupton JE, Nakamura K, de Ronde CEJ, Massoth GJ (2008) Hydrothermal activity and volcano distribution along the Mariana Arc. J Geophys Res 113.B08S09. doi: 10.1029/2007JB005423
  4. Baker ET, Walker ET, Embley RW, de Ronde CEJ (2012) High-resolution hydrothermal mapping of brothers caldera, Kermadec arc. Econ Geol 107:1583–1593CrossRefGoogle Scholar
  5. Bloomer SH, Stern RJ, Fisk E, Geschwind CH (1989) Shoshonitic volcanism in the Northern Mariana arc 1. Mineralogic and major trace element characteristics. J Geophys Res 94:4469–4496CrossRefGoogle Scholar
  6. Butterfield DA, Nakamura K, Takano B, Lilley MD, Lupton JE, Resing JA, Roe KK (2011) High SO2 flux, sulfur accumulation and gas fractionation at an erupting submarine volcano. Geology 39:803–806. doi: 10.1130/G31901.1 CrossRefGoogle Scholar
  7. Chadwick WW, Cashman KV Jr, Embley RW, Matsumoto H, Dziak RP, de Ronde CEJ, Lau T-K, Deardorff N, Merle SG (2008) Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. J Geophys Res 113:B08S10. doi: 10.1029/2007JB005215 CrossRefGoogle Scholar
  8. Chadwick WW, Dziak RP Jr, Haxell JH, Embley RW, Matsumoto H (2012) Submarine landslide triggered by volcanic eruption recorded by in-situ hydrophone. Geology 40:51–54CrossRefGoogle Scholar
  9. Christenson BW (1994) Convection and stratification in Ruapehu Crater Lake, New Zealand: implications for lake Nyos-type gas release eruptions. Geochem J 28:185–197CrossRefGoogle Scholar
  10. Christenson BW, Wood CP (1993) Evolution of a vent-hosted hydrothermal system beneath Ruapehu Crater Lake, New Zealand. Bull Volcanol 55:547–565CrossRefGoogle Scholar
  11. Christenson BW, Reyes AG, Young R, Moebis A, Sherburn S, Cole-Baker J, Britten K (2010) Cyclic processes and factors leading to phreatic eruption events: Insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. J Volcanol Geotherm Res 191:15–32CrossRefGoogle Scholar
  12. Crisp JA (1984) Rates of magma emplacement and volcanic output. J Volcanol Geotherm Res 20:177–211CrossRefGoogle Scholar
  13. de Ronde CEJ, Baker ET, Massoth GJ, Lupton JE, Wright IC, Feely RA, Greene RG (2001) Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planet Sci Lett 193:359–369CrossRefGoogle Scholar
  14. de Ronde CEJ, Massoth GJ, Baker ET, Lupton JE (2003) Submarine hydrothermal venting related to volcanic arcs. In: Simmons SF, Graham IG (eds) Giggenbach Memorial volume. Soc Econ Geol and Geochem Soc Special Publ 10: 91–109 Google Scholar
  15. de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CJ, Resing JA (2005) Evolution of a submarine magmatic-hydrothermal system: brothers volcano, southern Kermadec arc, New Zealand. Econ Geol 100:1097–1133CrossRefGoogle Scholar
  16. de Ronde CEJ, Baker ET, Massoth GJ, Lupton JE, Wright IC, Sparks RJ, Bannister SC, Reyners ME, Walker SL, Greene RR, Ishibashi J, Faure K, Resing JA, Lebon GT (2007) Submarine hydrothermal activity along the mid-Kermadec Arc, New Zealand: large-scale effects on venting. Geochem Geophys Geosyst 8:Q07007. doi: 10.1029/2006GC001495 CrossRefGoogle Scholar
  17. de Ronde CEJ, Massoth GJ, Butterfield DA, Christenson BW, Ishibashi J, Ditchburn RG, Hannington MD, Brathwaite RL, Lupton JE, Kamenetsky VS, Graham IJ, Zellmer GF, Dziak RP, Embley RW, Dekov VM, Munnik F, Lahr J, Evans LJ, Takai K (2011) Submarine hydrothermal activity and gold-rich mineralization at Brothers volcano, Kermadec arc, New Zealand. Miner Deposita 46:541–584. doi: 10.1007/s00126-011-0345-8 CrossRefGoogle Scholar
  18. Di Muro A, Pallister J, Villemant B, Newhall C, Semet M, Martinez M, Mariet C (2008) Pre-1991 sulfur transfer between mafic injections and dacite magma in the Mt. Pinatubo Reservoir J Volcanol Geotherm Res 175:517–540CrossRefGoogle Scholar
  19. Ditchburn RG, de Ronde CEJ, Barry BJ (2012) Radiometric dating of volcanic massive sulfides and associated iron oxide crusts with an emphasis on 226Ra/Ba and 228Ra/226Ra in volcanic and hydrothermal processes at intraoceanic arcs. Econ Geol 107:1635–1648CrossRefGoogle Scholar
  20. Embley RW, Chadwick WW Jr, Baker ET, Butterfield DA, Resing JA, de Ronde CEJ, Tunnicliffe V, Lupton JE, Juniper SK, Rubin KH, Stern RJ, Lebon GT, Nakamura K, Merle SG, Hein JR, Wiens DP, Tamura Y (2006) Long-term eruptive activity at a submarine arc volcano. Nature 441:494–497CrossRefGoogle Scholar
  21. Embley RW, Baker ET, Butterfield DA, Chadwick WW Jr, Lupton JE, Resing J, de Ronde CEJ, Nakamura K, Tunnicliffe V, Dower J, Merle SG (2007) Exploring the submarine ring of fire: Mariana Arc—Western Pacific. Oceanography 20:68–79CrossRefGoogle Scholar
  22. Espeau P, Céolin R (2007) Density of molten sulfur in the 334–508 K range. Thermochim Acta 459:127–129CrossRefGoogle Scholar
  23. Ferrini VL, Fornari DJ, Shank TM, Kinsey JC, Tivey MA, Soule SA, Carbotte SM, Whitcomb LL, Yoerger D, Howland J (2007) Submeter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest at 9 50′ N. Geochem Geophys Geosyst 8:Q01006. doi: 10.1029/2006GC001333 CrossRefGoogle Scholar
  24. Ferrini VL, Tivey MK, Carbotte SM, Martinez F, Roman C (2008) Variable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin. Geochem Geophys Geosyst 9:Q07022. doi: 10.1029/2008GC002047 CrossRefGoogle Scholar
  25. Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161CrossRefGoogle Scholar
  26. Giggenbach WF (1992) Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Econ Geol 87:1927–1944Google Scholar
  27. Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcanic hazards. Springer, Berlin, pp 221–255CrossRefGoogle Scholar
  28. Henley RW, Berger BR (2010) Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization. Ore Geol Rev 39:63–74CrossRefGoogle Scholar
  29. Henley RW, Berger BR (2012) Nature’s refineries—metals and metalloids in arc volcanoes. In: Rouwet D, Tassi F, Vandmeulebrouck J, Christenson B (eds) Volcanic lakes. Springer, BerlinGoogle Scholar
  30. Hurst AW, Bibby HM, Scott BJ, McGuinness MJ (1991) The heat source of Ruapehu Crater Lake; deductions from the energy and mass balances. J Volcanol Geotherm Res 46:1–20CrossRefGoogle Scholar
  31. Jenner FE, O’Neill HSC, Arculus RJ, Mavrogenes JA (2010) The Magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J Petrol 51:2445–2464CrossRefGoogle Scholar
  32. Jugo PJ, Luth RW, Richards JP (2005) An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300℃ and 1.0 GPa. J Petrology 46:783–798CrossRefGoogle Scholar
  33. Kamenov GD, Perfit MR, Jonasson IR, Mueller PA (2005) High-precision Pb isotope measurements reveal magma recharge as a mechanism for ore deposit formation: examples from Lihir Island and Conical seamount, Papua New Guinea. Chem Geol 219:131–148CrossRefGoogle Scholar
  34. Kim J, Lee K-Y, Kim J-H (2011) Metal-bearing molten sulfur collected from a submarine volcano: implications for vapor transport of metals in seafloor hydrothermal systems. Geology 39:351–354. doi: 10.1130/G31665.1 CrossRefGoogle Scholar
  35. Kusakabe M, Komoda Y, Takano B, Abiko T (2000) Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J Volcanol Geotherm Res 97:287–307CrossRefGoogle Scholar
  36. Lin P-N, Stern RJ (1989) Shoshonitic volcanism in the Northern Mariana arc 2. Large-ion lithophile and rare earth element abundances: evidence for the source of incompatible element enrichments in intraoceanic arcs. J Geophys Res 94:4497–4514CrossRefGoogle Scholar
  37. Lowenstern JB (2001) Carbon dioxide in magmas and implications for hydrothermal systems. Miner Deposita 36:490–502. doi: 10.1007/s001260100185 CrossRefGoogle Scholar
  38. Lupton JE, Butterfield DA, Lilley M, Evans L, Nakamura K, Chadwick WW Jr, Resing J, Embley RW, Olson E, Proskurowski G, Baker E, de Ronde CEJ, Roe KK, Lebon GT, Young C (2006) Submarine venting of liquid carbon dioxide on a Mariana arc volcano. Geochem Geophys Geosyst 7:Q08007. doi: 10.1029/2005GC001152 CrossRefGoogle Scholar
  39. Lupton J, Lilley M, Butterfield D, Evans L, Embley R, Massoth G, Christenson B, Nakamura K, Schmidt M (2008) Venting of a separate CO2-rich gas phase from submarine arc volcanoes: examples from the Mariana and Tonga-Kermadec arcs. J Geophys Res 113. doi: 10.1029/2007jb005467
  40. Métrich N, Mandeville CW (2010) Sulfur in magmas. Elements 6:81–86CrossRefGoogle Scholar
  41. Mizutani Y, Sugiura T (1966) The chemical equilibrium of the 2H2S + SO2 = 3S + 2H2O reaction in solfataras of the Nasudake volcano, Hokkaido. Japan Bull Chem Soc Japan 39:2411–2414CrossRefGoogle Scholar
  42. Moretti R, Papale P (2004) On the oxidation state and volatile behavior in multicomponent gas–melt equilibria. Chem Geol 213:265–280CrossRefGoogle Scholar
  43. Ohmoto H, Lasaga AC (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1745CrossRefGoogle Scholar
  44. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 509–567Google Scholar
  45. Pokrovski GS, Borisova AY, Harrichoury J-C (2008) The effect of sulfur on vapor-liquid fractionation of metals in hydrothermal systems. Earth Planet Sci Lett 266:45–362Google Scholar
  46. Rees CE, Jenkins WJ, Monster J (1978) The sulfur isotope geochemistry of ocean water sulfate. Geochim Cosomochim Acta 42:77–382CrossRefGoogle Scholar
  47. Resing JA, Lebon G, Baker ET, Lupton JE, Embley RW, Massoth GJ, Chadwick WW Jr, de Ronde CEJ (2007) Venting of acid-sulfate fluids in a high-sulfidation setting at NW Rota-1 submarine volcano on the Mariana arc. Econ Geol 102:1047–1061CrossRefGoogle Scholar
  48. Resing JA, Baker ET, Lupton JE, Walker SL, Butterfield DA, Massoth GJ, Nakamura K (2009) Chemistry of hydrothermal plumes above submarine volcanoes of the Mariana Arc. Geochem Geophys Geosyst 10. doi: 10.1029/2008GC002141
  49. Reyes AG, Grapes R, Clemente VC (2003) Fluid–rock interaction at the magmatic–hydrothermal interface of the Mount Cagua geothermal system, Philippines. In: Simmons SF, Graham IJ (eds) Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth vol 10. Soc Econ Geol Geochem Soc, Special Publication, pp 197–222Google Scholar
  50. Roman CN, Singh H (2007) A self-consistent bathymetric mapping algorithm. J Field Robotics 24:26–51CrossRefGoogle Scholar
  51. Seyfried WE Jr (1987) Experimental and theoretical constraints on hydrothermal alteration at mid-ocean ridges. Ann Rev Earth Planet Sci 15:317–350CrossRefGoogle Scholar
  52. Steudel R, Eckert B (2003) Solid sulfur allotropes. In: Steudel R (ed) Elemental sulfur and sulfur-rich compounds I. Topics in current chemistry 230. Springer, Berlin, pp 1–80Google Scholar
  53. Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341CrossRefGoogle Scholar
  54. Tunnicliffe V, Koop BF, Tyler J, So S (2010) Flatfish at seamount hydrothermal vents show strong genetic divergence between volcanic arcs. Mar Ecol 31:158–167. doi: 10.1111/j.1439-0485.2010.00370.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • C. E. J. de Ronde
    • 1
    Email author
  • W. W. ChadwickJr
    • 2
  • R. G. Ditchburn
    • 1
  • R. W. Embley
    • 3
  • V. Tunnicliffe
    • 4
  • E. T. Baker
    • 5
  • S. L. Walker
    • 5
  • V. L. Ferrini
    • 6
  • S. M. Merle
    • 2
  1. 1.GNS ScienceLower HuttNew Zealand
  2. 2.CIMRSOregon State UniversityNewportUSA
  3. 3.NOAA/PMELNewportUSA
  4. 4.Department of Biology/School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada
  5. 5.Pacific Marine Environmental LaboratoryNOAASeattleUSA
  6. 6.Lamont-Doherty Earth ObservatoryMarine Geology and GeophysicsPalisadesUSA

Personalised recommendations