Advertisement

Agent-Based and Population-Based Modeling of Trust Dynamics

  • Syed Waqar Jaffry
  • Jan Treur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7770)

Abstract

Trust is usually viewed at an individual level in the sense of an agent having trust in a certain trustee. It can also be considered at a population level, in the sense of how much trust for a certain trustee exists in a given population or group of agents. The dynamics of trust states over time can be modelled per individual in an agent-based manner. These individual trust states can be aggregated to obtain the trust state of the population. However, in an alternative way trust dynamics can be modelled from a population perspective as well. Such a population-level model is much more efficient computationally. In this paper both ways of modelling are investigated and it is analyzed how close they can approximate each other. This is done both by simulation experiments and by mathematical analysis. It is shown that the approximation can be reasonably accurate, and for larger numbers of agents even quite accurate.

Keywords

Trust Model Multiagent System Direct Experience Trust Level Trust State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.A., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)Google Scholar
  2. 2.
    Antunes, L., Takadama, K. (eds.): MABS 2006. LNCS (LNAI), vol. 4442. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Bal, H., Bhoedjang, R., Hofman, R., Jacobs, C., Kielmann, T., Maassen, J., et al.: The distributed ASCI Supercomputer project. SIGOPS Oper. Syst. Rev. 34(4), 76–96 (2000)CrossRefGoogle Scholar
  4. 4.
    Burghes, D.N., Borrie, M.S.: Modelling with Differential Equations. John Wiley and Sons (1981)Google Scholar
  5. 5.
    Danek, A., Urbano, J., Rocha, A.P., Oliveira, E.: Engaging the Dynamics of Trust in Computational Trust and Reputation Systems. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010, Part I. LNCS, vol. 6070, pp. 22–31. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Davidsson, P., Logan, B., Takadama, K. (eds.): MABS 2004. LNCS (LNAI), vol. 3415. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Ellner, S.P., Guckenheimer, J.: Dynamic Models in Biology. Princeton University Press (2006)Google Scholar
  8. 8.
    Falcone, R., Castelfranchi, C.: Trust dynamics: How trust is influenced by direct experiences and by trust itself. In: Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2004, New York, USA, pp. 740–747 (2004)Google Scholar
  9. 9.
    Hoogendoorn, M., Jaffry, S.W.: The Influence of Personalities Upon the Dynamics of Trust and Reputation. In: Proc. of the International Conference on Computational Science and Engineering, CSE 2009, pp. 263–270 (2009a)Google Scholar
  10. 10.
    Jaffry, S.W., Treur, J.: Comparing a Cognitive and a Neural Model for Relative Trust Dynamics. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009, Part I. LNCS, vol. 5863, pp. 72–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Hoogendoorn, M., Jaffry, S.W., Treur, J.: Cognitive and Neural Modeling of Dynamics of Trust in Competitive Trustees. Cognitive Systems Research Journal 14, 60–83 (2011, 2012)Google Scholar
  12. 12.
    Huff, L., Kelley, L.: Levels of Organizational Trust in Individualist versus Collectivist Societies: A Seven Nation Study. Organizational Science 14, 81–90 (2003)CrossRefGoogle Scholar
  13. 13.
    Jones, A.: On the concept of trust. Decision Support Systems 33, 225–232 (2002)CrossRefGoogle Scholar
  14. 14.
    Jonker, C.M., Treur, J.: A Temporal-Interactivist Perspective on the Dynamics of Mental States. Cognitive Systems Research Journal 4, 137–155 (2003)CrossRefGoogle Scholar
  15. 15.
    Jonker, C.M., Treur, J.: Formal Analysis of Models for the Dynamics of Trust based on Experiences. In: Garijo, F.J., Boman, M. (eds.) MAAMAW 1999. LNCS, vol. 1647, pp. 221–232. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Jøsang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for Online Service Provision. Decision Support Systems 43(2), 618–644 (2007)CrossRefGoogle Scholar
  17. 17.
    Kermack, W.O., McKendrick, W.G.: A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London, Series A 115, 700–721 (1927)zbMATHCrossRefGoogle Scholar
  18. 18.
    Lotka, A.J.: Elements of Physical Biology. Reprinted by Dover in 1956 as Elements of Mathematical Biology (1924)Google Scholar
  19. 19.
    Maynard Smith, J.: Models in Ecology. Cambridge University Press, Cambridge (1974)zbMATHGoogle Scholar
  20. 20.
    Van Dyke Parunak, H., Savit, R., Riolo, R.L.: Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users’ Guide. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 10–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in Multi-Agent Systems. The Knowledge Engineering Review 19, 1–25 (2004)CrossRefGoogle Scholar
  22. 22.
    Sabater, J., Sierra, C.: Review on Computational Trust and Reputation Models. Artificial Intelligence Review 24, 33–60 (2005)zbMATHCrossRefGoogle Scholar
  23. 23.
    Singh, S.I., Sinha, S.K.: A New Trust Model Based on Time Series Prediction and Markov Model. In: Das, V.V., Vijaykumar, R. (eds.) ICT 2010. CCIS, vol. 101, pp. 148–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Skopik, F., Schall, D., Dustdar, S.: Modeling and mining of dynamic trust in complex service-oriented systems. Information Systems 35, 735–757 (2010)CrossRefGoogle Scholar
  25. 25.
    Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)zbMATHCrossRefGoogle Scholar
  26. 26.
    Walter, F.E., Battiston, S., Schweitzer, F.: Personalised and Dynamic Trust in Social Networks. In: Bergman, L., Tuzhilin, A., Burke, R., Felfernig, A., Schmidt-Thieme, L. (eds.) Proceedings of the Third ACM Conference on Recommender Systems, RecSys 2009, pp. 197–204. ACM (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Syed Waqar Jaffry
    • 1
    • 2
  • Jan Treur
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Punjab University College of Information Technology (PUCIT), University of The PunjabLahorePakistan

Personalised recommendations