Parallel Interval Newton Method on CUDA

  • Philip-Daniel Beck
  • Marco Nehmeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7782)


In this paper we discuss a parallel variant of the interval Newton method for root finding of non linear continuously differentiable functions on the CUDA architecture. For this purpose we have investigated different dynamic load balancing methods to get an evenly balanced workload during the parallel computation. We tested the functionality, correctness and performance of our implementation in different case studies and compared it with other implementations.


Interval arithmetic Interval Newton method Parallel computing Load balancing CUDA GPGPU 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multiprocessors. In: Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 1998, pp. 119–129. ACM, New York (1998)CrossRefGoogle Scholar
  2. 2.
    Boost Interval Arithmetic Library (November 2012),
  3. 3.
    Cederman, D., Tsigas, P.: On dynamic load balancing on graphics processors. In: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH 2008, pp. 57–64. Eurographics Association, Aire-la-Ville (2008)Google Scholar
  4. 4.
    Gau, C.-Y., Stadtherr, M.A.: Parallel interval-newton using message passing: dynamic load balancing strategies. In: Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (CDROM), Supercomputing 2001, pp. 23–23. ACM, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Computing I: Basic Numerical Problems. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  6. 6.
    Jason Sanders, E.K.: CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Longman, Amsterdam (2010)Google Scholar
  7. 7.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, 1st edn. Springer, Heidelberg (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Khronos OpenCL Working Group. The OpenCL Specification, version 1.1.44 (June 2011)Google Scholar
  9. 9.
    Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.: Filib++, a fast interval library supporting containment computations. ACM Trans. Math. Softw. 32(2), 299–324 (2006)CrossRefGoogle Scholar
  10. 10.
    Message Passing Interface Forum. Mpi: A message-passing interface standard, version 2.2. Specification (September 2009)Google Scholar
  11. 11.
    NVIDIA. NVIDIA CUDA reference manual, version 3.2 Beta (August. 2010)Google Scholar
  12. 12.
    Tzeng, S., Patney, A., Owens, J.D.: Task management for irregular-parallel workloads on the gpu. In: Doggett, M., Laine, S., Hunt, W. (eds.) High Performance Graphics, pp. 29–37. Eurographics Association (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Philip-Daniel Beck
    • 1
  • Marco Nehmeier
    • 1
  1. 1.Institute of Computer ScienceUniversity of WürzburgWürzburgGermany

Personalised recommendations