Advertisement

Solution of Multi-Objective Competitive Facility Location Problems Using Parallel NSGA-II on Large Scale Computing Systems

  • Algirdas Lančinskas
  • Julius Żilinskas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7782)

Abstract

The multi-objective firm expansion problem on competitive facility location model, and an evolutionary algorithm suitable to solve multi-objective optimization problems are reviewed in the paper. Several strategies to parallelize the algorithm utilizing both the distributed and shared memory parallel programing models are presented. Results of experimental investigation carried out by solving the competitive facility location problem using up to 2048 processing units are presented and discussed.

Keywords

Multi-objective Optimization Parallel Pareto Ranking Parallel Non-dominated Sorting Genetic Algorithm Competitive Facility Location Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hotelling, H.: Stability in competition. Economic Journal 39, 41–57 (1929)CrossRefGoogle Scholar
  2. 2.
    Eiselt, H., Laporte, G.: Sequential location problems. European Journal of Operational Research 96, 217–231 (1996)CrossRefGoogle Scholar
  3. 3.
    Eiselt, H., Laporte, G., Thisse, J.F.: Competitive location models: a framework and bibliography. Transportation Science 27(1), 44–54 (1993)zbMATHCrossRefGoogle Scholar
  4. 4.
    Plastria, F.: Static Competitive Facility Location: An Overview of Optimisation Approaches. European Journal of Operational Research 129(3), 461–470 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Sáiz, M.E., Hendrix, E.M.T., Fernández, J., Pelegrín, B.: On a branch-and-bound approach for a Huff-like Stackelberg location problem. OR Spectrum 31, 679–705 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Tóth, B., Fernández, J., Pelegrín, B., Plastria, F.: Sequential versus simultaneous approach in the location and design of two new facilities using planar Huff-like models. Journal of Operational Research 36(5), 1393–1405 (2009)zbMATHGoogle Scholar
  7. 7.
    Huff, D.L.: Defining and estimating a trade area. Journal of Marketing 28, 34–38 (1964)CrossRefGoogle Scholar
  8. 8.
    Huff, D.L.: A programmed solution for approximating an optimum retail location. Land Economics 42, 293–303 (1966)CrossRefGoogle Scholar
  9. 9.
    Drezner, T.: Locating a single new facility among existing unequally attractive facilities. Journal Regional Science 34(2), 237–252 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Plastria, F.: Profit maximising single competitive facility location in the plane. Studies in Locational Analysis 11, 115–126 (1997)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Plastria, F., Carrizosa, E.: Optimal location and design of a competitive facility. Mathematical Programming 100, 247–265 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Redondo, J.L., Fernández, I.G., Ortigosa, P.: Heuristics for the facility location and design (1j1)-centroid problem on the plane. Computational Optimization and Applications 45(1), 111–141 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Srinivas, N., Deb, K.: Multi-Objective Function Optimization Using Non-dominated Sorting Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1995)CrossRefGoogle Scholar
  14. 14.
    Mitra, K., Deb, K., Gupta, S.K.: Multiobjective Dynamic Optimization of an Industrial Nylon 6 Semibatch Reactor Using Genetic Algorithms. Journal of Applied Polymer Science 69(1), 69–87 (1998)CrossRefGoogle Scholar
  15. 15.
    Weile, D.S., Michielssen, E., Goldberg, D.E.: Genetic Algorithm Design of pareto-optimal Broad Band Microwave Absorbers. IEEE Transactions on Electromagnetic Compatibility 38(4), 518–525 (1996)CrossRefGoogle Scholar
  16. 16.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Amdahl, G.M.: Validity of the single-processor approach to achieving large scale computing capabilities. In: AFIPS Conference Proceedings, vol. 30, pp. 483–485 (1967)Google Scholar
  18. 18.
    Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A study of master-slave approaches to parallelize NSGA-II. In: IEEE International Symposium on Parallel and Distributed Processing, pp. 14–18 (2008)Google Scholar
  19. 19.
    Coello, C.C., Lamont, G.B., Veldhuizen, D.A. (eds.): Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. (2007)Google Scholar
  20. 20.
    Lančinskas, A., Žilinskas, J.: Approaches to Parallelize pareto Ranking in NSGA-II Algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 371–380. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Algirdas Lančinskas
    • 1
  • Julius Żilinskas
    • 1
  1. 1.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania

Personalised recommendations