Preconditioning for Large Scale Micro Finite Element Analyses of 3D Poroelasticity

  • Peter Arbenz
  • Erhan Turan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7782)

Abstract

Osteoporosis is considered as a major health problem in the world. An understanding of the behavior of human bone under cyclic load requires numerical simulation of the physics. For that purpose, a large scale poroleastic solver is developed based on the mixed finite element method. This approach is free of numerical instabilities yet the discretization leads to an indefinite system that needs special attention. In this work, a comparison is made on several preconditioners that work efficiently in parallel environments.

Keywords

poroelasticity finite elements flexible GMRES optimal preconditioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi, T.J., Kameo, Y., Hojo, M.: Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress. Phil. Trans. R. Soc. A 368, 2669–2682 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Aguilar, G., Gaspar, G., Lisbona, F., Rodrigo, C.: Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int. J. Numer. Methods Eng. 75, 1282–1300 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arbenz, P., van Lenthe, G.H., Mennel, U., Müller, R., Sala, M.: A scalable multi-level preconditioner for matrix-free μ-finite element analysis of human bone structures. Int. J. Numer. Methods Eng. 73(7), 927–947 (2008)MATHCrossRefGoogle Scholar
  4. 4.
    Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–90 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)MATHCrossRefGoogle Scholar
  6. 6.
    Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 1–127. Academic Press, New York (1976)Google Scholar
  7. 7.
    Bundschuh, J., Arriaga, M.C.S.: Introduction to the Numerical Modeling of Groundwater and Geothermal Systems. Taylor and Francis, London (2010)Google Scholar
  8. 8.
    Coussy, O.: Poromechanics, 2nd edn. Wiley, Chichester (2004)Google Scholar
  9. 9.
    Coussy, O.: Mechanics and Physics of Porous Solids. Wiley, Chichester (2010)CrossRefGoogle Scholar
  10. 10.
    Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)CrossRefGoogle Scholar
  11. 11.
    Detournay, E., Cheng, D.A.H.: Fundamentals of poroelasticity. In: Fairhurst, C. (ed.) Comprehensive Rock Engineering: Principles, Practice & Projects, vol. 2, pp. 113–171. Pergamon, Oxford (1993)Google Scholar
  12. 12.
    Ferronato, M., Castelletto, N., Gambolati, G.: A fully coupled 3-D mixed finite element model of Biot consolidation. J. Comput. Phys. 229, 4813–4830 (2010)MATHCrossRefGoogle Scholar
  13. 13.
    Flaig, C., Arbenz, P.: A scalable memory efficient multigrid solver for micro-finite element analyses based on CT images. Parallel Comput. 37(12), 846–854 (2011)CrossRefGoogle Scholar
  14. 14.
    Gambolati, G., Ferronato, M., Janna, C.: Preconditioners in computational geomechanics: A survey. Int. J. Numer. Anal. Meth. Geomech. 35, 980–996 (2011)CrossRefGoogle Scholar
  15. 15.
    Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Springer, Berlin (1979)MATHCrossRefGoogle Scholar
  16. 16.
    Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    International Osteoporosis Organization (2012), http://www.iofbonehealth.org
  18. 18.
    Lipnikov, K.: Numerical Methods for the Biot Model in Poroelasticity. Ph.D. thesis, University of Houston (2002)Google Scholar
  19. 19.
    Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21(6), 1969–1972 (2000)MathSciNetMATHGoogle Scholar
  20. 20.
    Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    METIS-Family of Multilevel Partitioning Algorithms, http://glaros.dtc.umn.edu/gkhome/views/metis
  22. 22.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)MATHCrossRefGoogle Scholar
  23. 23.
    Sleijpen, G.L.G., van der Vorst, H.A., Modersitzki, J.: Differences in the effects of rounding errors in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix Anal. Appl. 22(3), 726–751 (2001)CrossRefGoogle Scholar
  24. 24.
    The Trilinos Project Home Page, http://trilinos.sandia.gov/
  25. 25.
    Truty, A.: A Galerkin/least-squares finite element formulation for consolidation. Int. J. Numer. Methods Eng. 52, 763–786 (2001)MATHCrossRefGoogle Scholar
  26. 26.
    Wang, H.F.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, Princeton (2000)Google Scholar
  27. 27.
    White, J.A., Borja, R.I.: Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput. Methods Appl. Mech. Engrg. 197, 4353–4366 (2008)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter Arbenz
    • 1
  • Erhan Turan
    • 1
  1. 1.Department of Computer ScienceETH ZürichZürichSwitzerland

Personalised recommendations