Advertisement

AutoTune: A Plugin-Driven Approach to the Automatic Tuning of Parallel Applications

  • Renato Miceli
  • Gilles Civario
  • Anna Sikora
  • Eduardo César
  • Michael Gerndt
  • Houssam Haitof
  • Carmen Navarrete
  • Siegfried Benkner
  • Martin Sandrieser
  • Laurent Morin
  • François Bodin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7782)

Abstract

Performance analysis and tuning is an important step in programming multicore- and manycore-based parallel architectures. While there are several tools to help developers analyze application performance, no tool provides recommendations about how to tune the code. The AutoTune project is extending Periscope, an automatic distributed performance analysis tool developed by Technische Universität München, with plugins for performance and energy efficiency tuning. The resulting Periscope Tuning Framework will be able to tune serial and parallel codes for multicore and manycore architectures and return tuning recommendations that can be integrated into the production version of the code. The whole tuning process – both performance analysis and tuning – will be performed automatically during a single run of the application.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miceli, R., Civario, G., Bodin, F.: AutoTune: Automatic Online Code Tuning. In: NVIDIA GPU Technology Conference 2012 (GTC 2012), San Jose, USA (2012)Google Scholar
  2. 2.
    Benedict, S., Petkov, V., Gerndt, M.: PERISCOPE: An Online-Based Distributed Performance Analysis Tool Tools for High Performance Computing 2009, pp. 1–16. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Whaley, C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of software and the atlas project. Parallel Computing 27, 2001 (2000)Google Scholar
  4. 4.
    Frigo, M., Johnson, S.G.: Fftw: An adaptive software architecture for the fft, pp. 1381–1384. IEEE (1998)Google Scholar
  5. 5.
    Vuduc, R., Demmel, J.W., Yelick, K.A.: Oski: A library of automatically tuned sparse matrix kernels. Institute of Physics Publishing (2005)Google Scholar
  6. 6.
    Püschel, M., Moura, J.M.F., Singer, B., Xiong, J., Johnson, J., Padua, D., Veloso, M., Johnson, R.W.: Spiral: A generator for platform-adapted libraries of signal processing algorithms. Journal of High Performance Computing and Applications 18, 21–45 (2004)CrossRefGoogle Scholar
  7. 7.
    Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.I.: Compiler optimization-space exploration. In: Proceedings of the International Symposium on Code Generation and Optimization, pp. 204–215. IEEE Computer Society (2003)Google Scholar
  8. 8.
    Haneda, M., Knijnenburg, P., Wijshoff, H.: Automatic selection of compiler options using non-parametric inferential statistics. In: 14th International Conference on Parallel Architectures and Compilation Techniques (PACT 2005), pp. 123–132 (September 2005)Google Scholar
  9. 9.
    Pan, Z., Eigenmann, R.: Fast and effective orchestration of compiler optimizations for automatic performance tuning. In: Proceedings of the International Symposium on Code Generation and Optimization (CGO), pp. 319–332 (2006)Google Scholar
  10. 10.
    Leather, H., Bonilla, E.: Automatic feature generation for machine learning based optimizing compilation. In: Code Generation and Optimization (CGO), pp. 81–91 (2009)Google Scholar
  11. 11.
    Fursin, G., Kashnikov, Y., Wahid, A., Chamski, M.Z., Temam, O., Namolaru, M., Yom-tov, E., Mendelson, B., Zaks, A., Courtois, E., Bodin, F., Barnard, P., Ashton, E., Bonilla, E., Thomson, J., Williams, C.K.I.: Milepost gcc: machine learning enabled self-tuning compiler (2009)Google Scholar
  12. 12.
    Chung, I.H., Hollingsworth, J.: Using information from prior runs to improve automated tuning systems. In: Supercomputing. Proceedings of the ACM/IEEE SC2004 Conference, vol. 30 (November 2004)Google Scholar
  13. 13.
    Nelson, Y., Bansal, B., Hall, M., Nakano, A., Lerman, K.: Model-guided performance tuning of parameter values: A case study with molecular dynamics visualization. In: IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2008), pp. 1–8 (April 2008)Google Scholar
  14. 14.
    Tiwari, A., Chen, C., Chame, J., Hall, M., Hollingsworth, J.: A scalable auto-tuning framework for compiler optimization. In: IEEE International Symposium on Parallel Distributed Processing (IPDPS 2009), pp. 1–12 (May 2009)Google Scholar
  15. 15.
    Ribler, R., Vetter, J., Simitci, H., Reed, D.: Autopilot: adaptive control of distributed applications. In: Proceedings of the Seventh International Symposium on High Performance Distributed Computing, pp. 172–179 (July 1998)Google Scholar
  16. 16.
    Benkner, S., Pllana, S., Traff, J., Tsigas, P., Dolinsky, U., Augonnet, C., Bachmayer, B., Kessler, C., Moloney, D., Osipov, V.: Peppher: Efficient and productive usage of hybrid computing systems. IEEE Micro. 31(5), 28–41 (2011)CrossRefGoogle Scholar
  17. 17.
    Gary, B.: Learning opencv: Computer vision with the opencv library (2008)Google Scholar
  18. 18.
    Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A., Inria, L., Sud-ouest, B.: Author manuscript, published in “euro-par (2009)” starpu: A unified platform for task scheduling on heterogeneous multicore architectures (2009)Google Scholar
  19. 19.
    CAPS Entreprise: HMPP Directives Reference Manual, version 3.2.0 (2012)Google Scholar
  20. 20.
    CAPS Entreprise: The HMPP Workbench, http://www.caps-entreprise.com/products/hmpp/ (accessed on October 16, 2012)
  21. 21.
    CAPS Entreprise: H4H - HMPP Profiling Event specification, version 2.3.3 (2012)Google Scholar
  22. 22.
    The CUDA Profiling Tools Interface, http://docs.nvidia.com/cupti/ (accessed on October 16, 2012)
  23. 23.
    David, H., Gorbato, E., Hanebutte, U., Khanna, R., Le, C.: RAPL: memory power estimation and capping. In: Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Renato Miceli
    • 1
  • Gilles Civario
    • 1
  • Anna Sikora
    • 2
  • Eduardo César
    • 2
  • Michael Gerndt
    • 3
  • Houssam Haitof
    • 3
  • Carmen Navarrete
    • 4
  • Siegfried Benkner
    • 5
  • Martin Sandrieser
    • 5
  • Laurent Morin
    • 6
  • François Bodin
    • 6
  1. 1.Irish Centre for High-End ComputingTrinity Tech & Ent CampusDublinIreland
  2. 2.CAOS DepartmentUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Institut für InformatikTechnische Universität MünchenGarchingGermany
  4. 4.Leibniz-Rechenzentrum, The Bavarian Academy of SciencesGarchingGermany
  5. 5.Faculty of Computer ScienceUniversity of ViennaWienAustria
  6. 6.Immeuble CAP NordCAPS EntrepriseRennesFrance

Personalised recommendations