Topology Aware Process Mapping

  • Sebastian von Alfthan
  • Ilja Honkonen
  • Minna Palmroth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7782)

Abstract

A parallel program based on the Message Passing Interface (MPI) commonly uses point-to-point communication for updating data between processes, and its scalability is ultimately limited by communication costs. To minimize these costs we have developed a library that reduces network congestion, and thus improves performance, by optimizing the placement of processes onto nodes allocated to the parallel job. Our approach is useful on production machines, as irregular communication patterns can at run-time be optimally placed on non-contiguous node allocations. It is also portable as it supports multiple architectures: Cray XT, IBM BlueGene/P and regular SMP clusters. We demonstrate on a Cray XT5m and an Infiniband cluster that good placement of processes doubles the total bandwidth compared to random placement and, furthermore, by up to a factor of 1.4 compared to to the original placement. It is not only important to place processes well on individual nodes, minimizing the number of link traversals on the Cray XT5m provides up to 20 % of additional performance. The scalability of a real-world application, Vlasiator, is also investigated and the scalability is shown to improve by up to 35 %. For communication limited applications the approach provides an avenue to improve performance, and is useful even with dynamic load balancing as the placement is optimized at run-time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Devine, K., Boman, E., Heapby, R., Hendrickson, B., Vaughan, C.: Zoltan data management service for parallel dynamic applications. Computing in Science and Engg. 4(2), 90–97 (2002)CrossRefGoogle Scholar
  2. 2.
    Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)CrossRefGoogle Scholar
  3. 3.
    Bhanot, G., Gara, A., Heidelberger, P., Lawless, E., Sexton, J.C., Walkup, R.: Optimizing task layout on the blue gene/l supercomputer. IBM J. Res. Dev. 49(2), 489–500 (2005)CrossRefGoogle Scholar
  4. 4.
    Bhatele, A.: Automating topology aware mapping for supercomputers. PhD thesis, Champaign, IL, USA, AAI3425400 (2010)Google Scholar
  5. 5.
    Chen, H., Chen, W., Huang, J., Robert, B., Kuhn, H.: Mpipp: an automatic profile-guided parallel process placement toolset for smp clusters and multiclusters. In: Proceedings of the 20th Annual International Conference on Supercomputing (ICS 2006), pp. 353–360. ACM, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Jeannot, E., Mercier, G.: Near-Optimal Placement of MPI Processes on Hierarchical NUMA Architectures. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part II. LNCS, vol. 6272, pp. 199–210. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Mercier, G., Jeannot, E.: Improving MPI Applications Performance on Multicore Clusters with Rank Reordering. In: Cotronis, Y., Danalis, A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp. 39–49. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Subramoni, H., Potluri, S., Kandalla, K., Barth, B., Vienne, J., Keasler, J., Tomko, K., Schulz, K., Moody, A., Panda, D.K.: Design of a scalable infiniband topology service to enable network-topology-aware placement of processes. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC 2012), pp. 70:1–70:12. IEEE Computer Society Press, Los Alamitos (2012)Google Scholar
  9. 9.
    Palmroth, M., Honkonen, I., Sandroos, A., Kempf, Y., von Alfthan, S., Pokhotelov, D.: Preliminary testing of global hybrid-vlasov simulation: Magnetosheath and cusps under northward interplanetary magnetic field. J. Atm. Solar Terr. Phys. (in press), http://dx.doi.org/10.1016/j.jastp.2012.09.013
  10. 10.
    Honkonen, I., von Alfthan, S., Sandroos, A., Janhunen, P., Palmroth, M.: Parallel grid library for rapid and flexible simulation development. Comp. Phys. Comm. (in press), http://dx.doi.org/10.1016/j.cpc.2012.12.017
  11. 11.
    LeVeque, R.J.: Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys. 131(2), 327–353 (1997)MATHCrossRefGoogle Scholar
  12. 12.
    Langseth, J.O., LeVeque, R.J.: A wave propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys. 165(1), 126–166 (2000)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Londrillo, P., Zanna, L.D.: On the divergence-free condition in godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method. J. Comput. Phys. 195(1), 17–48 (2004)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian von Alfthan
    • 1
  • Ilja Honkonen
    • 1
    • 2
  • Minna Palmroth
    • 1
  1. 1.Finnish Meteorological InstituteFinland
  2. 2.Department of PhysicsUniversity of HelsinkiFinland

Personalised recommendations