Data Traffic Monitoring and Analysis pp 320-336

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7754) | Cite as

Cross-Layer FEC-Based Mechanism for Packet Loss Resilient Video Transmission

  • Roger Immich
  • Eduardo Cerqueira
  • Marilia Curado

Abstract

Real-time video transmission over wireless networks is now a part of the daily life of users, since it is the vehicle that delivers a wide range of information. The challenge of dealing with the fluctuating bandwidth, scarce resources and time-varying error levels of these networks, reveals the need for packet-loss resilient video transport. Given these conditions, Forward Error Correction (FEC) approaches are desired to ensure the delivery of video services for wireless users with Quality of Experience (QoE) assurance. This work proposes a Cross-layer Video-Aware FEC-based mechanism with Unequal Error Protection (UEP) scheme for packet loss resilient video transmission in wireless networks, which can increase user satisfaction and improve the use of resources. The advantages and disadvantages of the developed mechanism are highlighted through simulations and assessed by means of both subjective and objective QoE metrics.

Keywords

Forward Error Correction (FEC) Video-aware FEC QoE Cross-layer Unequal Error Protection (UEP) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    comScore, “More than 200 billion online videos viewed globally in october,” comScore inc., Tech. Rep. (2011), http://www.comscore.com/Press_Events/Press_Releases/2011/12/More_than_200_Billion_Online_Videos_Viewed_Globally_in_October
  2. 2.
    Yuan, Y., Cockburn, B., Sikora, T., Mandal, M.: A gop based fec technique for packet based video streaming. In: Conference on Commun (WSEAS). ICCOM 2006, pp. 187–192 (2006)Google Scholar
  3. 3.
    Khan, A., Sun, L., Jammeh, E., Ifeachor, E.: Quality of experience-driven adaptation scheme for video applications over wireless networks. IET Commun. 4(11), 1337–1337 (2010)CrossRefGoogle Scholar
  4. 4.
    Piamrat, K., Viho, C., Bonnin, J.-M., Ksentini, A.: Quality of experience measurements for video streaming over wireless networks. In: Third International Conference on Information Technology: New Generations, pp. 1184–1189 (2009)Google Scholar
  5. 5.
    Lindeberg, M., Kristiansen, S., Plagemann, T., Goebel, V.: Challenges and techniques for video streaming over mobile ad hoc networks. Multimedia Systems 17, 51–82 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhu, R.: Intelligent rate control for supporting real-time traffic in wlan mesh networks. Journal of Network and Computer Applications 34(5), 1449–1458 (2011)CrossRefGoogle Scholar
  7. 7.
    Akyildiz, I., Wang, X.: A survey on wireless mesh networks. IEEE Communications Magazine 43(9), S23–S30 (2005)Google Scholar
  8. 8.
    Liu, T., Liao, W.: Interference-aware qos routing for multi-rate multi-radio multi-channel ieee 802.11 wireless mesh networks. IEEE Transactions on Wireless Communications 8(1), 166–175 (2009)CrossRefGoogle Scholar
  9. 9.
    Nafaa, A., Taleb, T., Murphy, L.: Forward error correction strategies for media streaming over wireless networks. IEEE Communications Magazine 46(1), 72–79 (2008)CrossRefGoogle Scholar
  10. 10.
    Lee, J.-W., Chen, C.-L., Horng, M.-F., Kuo, Y.-H.: An efficient adaptive fec algorithm for short-term quality control in wireless networks. In: Advanced Communication Technology (ICACT), pp. 1124–1129 (February 2011)Google Scholar
  11. 11.
    Han, L., Park, S., Kang, S.-S., In, H.P.: An adaptive fec mechanism using cross-layer approach to enhance quality of video transmission over 802.11 wlans. In: TIIS, pp. 341–357 (2010)Google Scholar
  12. 12.
    Aguiar, E., Riker, A., Cerqueira, E., Jorge Gomes Abelem, A., Mu, M., Zeadally, S.: Real-time qoe prediction for multimedia applications in wireless mesh networks. In: IEEE 4th Future Multimedia Networking, IEEE FMN 2012 (2012)Google Scholar
  13. 13.
    Hassan, M., Landolsi, T.: A retransmission-based scheme for video streaming over wireless channels. Wirel. Commun. Mob. Comput. 10, 511–521 (2010)Google Scholar
  14. 14.
    Alay, O., Korakis, T., Wang, Y., Panwar, S.S.: Dynamic rate and fec adaptation for video multicast in multi-rate wireless networks. Mobile Networks and Applications 15, 425–434 (2010)CrossRefGoogle Scholar
  15. 15.
    Tsai, M.-F., Chilamkurti, N.K., Zeadally, S., Vinel, A.: Concurrent multipath transmission combining forward error correction and path interleaving for video streaming. Comput. Commun. 34, 1125–1136 (2011)CrossRefGoogle Scholar
  16. 16.
    Staelens, N., Sedano, I., Barkowsky, M., Janowski, L., Brunnstrom, K., Le Callet, P.: Standardized toolchain and model development for video quality assessment - the mission of the joint effort group in vqeg. In: Quality of Multimedia Experience (QoMEX), pp. 61–66 (September 2011)Google Scholar
  17. 17.
    ITU-T Recommendation J.247, Objective perceptual multimedia video quality measurement in the presence of a full reference, International Telecommunications Union Std. (2008)Google Scholar
  18. 18.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  19. 19.
    Neckebroek, J., Moeneclaey, M., Magli, E.: Comparison of reed-solomon and raptor codes for the protection of video on-demand on the erasure channels. In: Proceedings of Information Theory and its Applications, International Conference, pp. 856–860. IEEE (2010)Google Scholar
  20. 20.
    Weingartner, E., vom Lehn, H., Wehrle, K.: A performance comparison of recent network simulators. In: IEEE Int. Conf. Commun (ICC), pp. 1–5 (2009)Google Scholar
  21. 21.
    Mpeg-4 and h.263 video traces for network performance evaluation, http://www.tkn.tu-berlin.de/research/trace/trace.html
  22. 22.
    Pinson, M.H., Wolf, S.: A new standardized method for objectively measuring video quality. IEEE Trans. on Broadcasting 50(3), 312–322 (2004)CrossRefGoogle Scholar
  23. 23.
    Chikkerur, S., Sundaram, V., Reisslein, M., Karam, L.: Objective video quality assessment methods: A classification, review, and performance comparison. IEEE Transactions on Broadcasting 57(2), 165–182 (2011)CrossRefGoogle Scholar
  24. 24.
    ITU-R Recommendation BT.500-11, Methodology for the subjective assessment of the quality of television pictures, International Telecommunications Union Std. (2002)Google Scholar
  25. 25.
    ITU-R Recommendation P.910, Subjective video quality assessment methods for multimedia applications, International Telecommunications Union Std. (1999)Google Scholar
  26. 26.
    Klaue, J., Rathke, B., Wolisz, A.: Evalvid - a framework for video transmission and quality evaluation. In: 13th Internation Conference on Modeling Techniques and Tools for Computer Performance Evaluation, pp. 255–272 (2003)Google Scholar
  27. 27.
    Vatolin, D., Moskin, A., Pretov, O., Trunichkin, N.: Msu video quality measurement tool, http://compression.ru/video/quality_measure/video_measurement_tool_en.html
  28. 28.
    Seshadrinathan, K., Soundararajan, R., Bovik, A., Cormack, L.: Study of subjective and objective quality assessment of video. IEEE Transactions on Image Processing 19(6), 1427–1441 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roger Immich
    • 1
  • Eduardo Cerqueira
    • 2
  • Marilia Curado
    • 1
  1. 1.Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal
  2. 2.Faculty of Computer EngineeringFederal University of ParaParaBrazil

Personalised recommendations