Advertisement

Getting a Grasp on Clinical Pathway Data: An Approach Based on Process Mining

  • Jochen De Weerdt
  • Filip Caron
  • Jan Vanthienen
  • Bart Baesens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7769)

Abstract

Since healthcare processes are pre-eminently heterogeneous and multi-disciplinary, information systems supporting these processes face important challenges in terms of design, implementation and diagnosis. Nonetheless, streamlining clinical pathways with the purpose of delivering high quality care while at the same time reducing costs is a promising goal. In this paper, we propose a methodology founded on process mining for intelligent analysis of clinical pathway data. Process mining can be considered a valuable approach to obtain a better understanding about the actual way of working in human-centric processes such as clinical pathways by investigating the event data as recorded in healthcare information systems. However, capturing tangible knowledge from clinical processes with their ad hoc and complex nature proves difficult. Accordingly, this paper proposes a data analysis methodology focussing on the extraction of tangible insights from clinical pathway data by adopting both a drill up and a drill down perspective.

Keywords

process mining clinical pathways healthcare information systems event logs fuzzy miner 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    OECD: OECD health data 2010: Statistics and indicators (2010), http://www.oecd.org/health/healthdata
  2. 2.
    Kohn, L.T., Corrigan, J.M., Donaldson, M.S.: To Err Is Human: Building a Safer Health System. The National Academies Press, Washington DC (2000); Committee on Quality of Health Care in America, Institute of MedicineGoogle Scholar
  3. 3.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  4. 4.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer (2007)Google Scholar
  5. 5.
    Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Systems: Bridging People and Software through Process Technology. John Wiley & Sons, Inc. (2005)Google Scholar
  6. 6.
    Lenz, R., Reichert, M.: It support for healthcare processes - premises, challenges, perspectives. Data Knowl. Eng. 61(1), 39–58 (2007)CrossRefGoogle Scholar
  7. 7.
    Anyanwu, K., Sheth, A.P., Cardoso, J., Miller, J.A., Kochut, K.: Healthcare enterprise process development and integration. Journal of Research and Practice in Information Technology 35(2), 83–98 (2003)Google Scholar
  8. 8.
    Lenz, R., Elstner, T., Siegele, H., Kuhn, K.A.: A practical approach to process support in health information systems. Journal of the American Medical Informatics Association 9(6), 571–585 (2002)CrossRefGoogle Scholar
  9. 9.
    Reijers, H.A., Russell, N., van der Geer, S., Krekels, G.A.M.: Workflow for healthcare: A methodology for realizing flexible medical treatment processes. In: [24], pp. 593–604Google Scholar
  10. 10.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  11. 11.
    Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Weijters, A.J.M.M., van der Aalst, W.M.P., Alves de Medeiros, A.K.: Process mining with the heuristicsminer algorithm. BETA Working Paper Series 166, TU Eindhoven (2006)Google Scholar
  13. 13.
    Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. Journal of Machine Learning Research 10, 1305–1340 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organizational mining. Decision Support Systems 46(1), 300–317 (2008)CrossRefGoogle Scholar
  15. 15.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Information Systems 33(1), 64–95 (2008)CrossRefGoogle Scholar
  16. 16.
    Mans, R.S., Schonenberg, H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.: Application of Process Mining in Healthcare - A Case Study in a Dutch Hospital. In: Fred, A.L.N., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2008. CCIS, vol. 25, pp. 425–438. Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments: A methodology based on process mining. Information Systems 37(2), 99–116 (2012)CrossRefGoogle Scholar
  18. 18.
    Bose, R.P.J.C., van der Aalst, W.M.P.: Analysis of patient treatment procedures. In: [23], pp. 165–166Google Scholar
  19. 19.
    Caron, F., Vanthienen, J., De Weerdt, J., Baesens, B.: Advanced care-flow mining and analysis. In: [23], pp. 167–168Google Scholar
  20. 20.
    Günther, C.W.: Process Mining in Flexible Environments. PhD thesis, TU Eindhoven (2009)Google Scholar
  21. 21.
    Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved patterns: Towards achieving better process models. In: [24], pp. 170–181Google Scholar
  22. 22.
    Hu, Y.: Algorithms for Visualizing Large Networks. In: Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing (to appear)Google Scholar
  23. 23.
    Daniel, F., Barkaoui, K., Dustdar, S. (eds.): BPM Workshops 2011, Part I. LNBIP, vol. 99. Springer, Heidelberg (2012)Google Scholar
  24. 24.
    Rinderle-Ma, S., Sadiq, S.W., Leymann, F. (eds.): BPM 2009. LNBIP, vol. 43. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jochen De Weerdt
    • 1
  • Filip Caron
    • 1
  • Jan Vanthienen
    • 1
  • Bart Baesens
    • 1
    • 2
  1. 1.Department of Decision Sciences and Information ManagementKU LeuvenLeuvenBelgium
  2. 2.School of ManagementUniversity of SouthamptonSouthamptonUnited Kingdom

Personalised recommendations