The Visible Perimeter of an Arrangement of Disks

  • Gabriel Nivasch
  • János Pach
  • Gábor Tardos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


Given a collection of n opaque unit disks in the plane, we want to find a stacking order for them that maximizes their visible perimeter, the total length of all pieces of their boundaries visible from above. We prove that if the centers of the disks form a dense point set, i.e., the ratio of their maximum to their minimum distance is O(n 1/2), then there is a stacking order for which the visible perimeter is Ω(n 2/3). We also show that this bound cannot be improved in the case of the n 1/2×n 1/2 piece of a sufficiently small square grid. On the other hand, if the set of centers is dense and the maximum distance between them is small, then the visible perimeter is O(n 3/4) with respect to any stacking order. This latter bound cannot be improved either. These results partially answer some questions of Cabello, Haverkort, van Kreveld, and Speckmann.


Visible perimeter disk unit disk dense set 


  1. 1.
    Alon, N., Katchalski, M., Pulleyblank, W.R.: The maximum size of a convex polygon in a restricted set of points in the plane. Discrete Comput. Geom. 4, 245–251 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cabello, S., Haverkort, H., van Kreveld, M., Speckmann, B.: Algorithmic aspects of proportional symbol maps. Algorithmica 58, 543–565 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dent, B.: Cartography. Thematic Map Design, 5th edn. McGraw-Hill, New York (1999)Google Scholar
  4. 4.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2, 463–470 (1935)MathSciNetGoogle Scholar
  5. 5.
    Griffin, T.: The importance of visual contrast for graduated circles. Cartography 19, 21–30 (1990)CrossRefGoogle Scholar
  6. 6.
    Groop, R.E., Cole, D.: Overlapping graduated circles: Magnitude estimation and method of portrayal. Can. Cartogr. 15, 114–122 (1978)CrossRefGoogle Scholar
  7. 7.
    Jarník, V.: Über die Gitterpunkte auf konvexen Kurven. Mathematische Zeitschrift 24, 500–518 (1926)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley, New York (1995)zbMATHCrossRefGoogle Scholar
  9. 9.
    Slocum, T.A., McMaster, R.B., Kessler, F.C., Howard, H.H.: Thematic Cartography and Geographic Visualization, 2nd edn. Prentice Hall, New York (2003)Google Scholar
  10. 10.
    Valtr, P.: Convex independent sets and 7-holes in restricted planar point sets. Discrete Comput. Geom. 7, 135–152 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Valtr, P.: Lines, line-point incidences and crossing families in dense sets. Combinatorica 16, 269–294 (1996)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gabriel Nivasch
    • 1
  • János Pach
    • 1
    • 2
  • Gábor Tardos
    • 2
    • 3
  1. 1.EPFLLausanneSwitzerland
  2. 2.Rényi InstituteBudapestHungary
  3. 3.Simon Fraser UniversityBurnabyCanada

Personalised recommendations