Advertisement

Covering Paths for Planar Point Sets

  • Adrian Dumitrescu
  • Csaba D. Tóth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)

Abstract

Given a set of points, a covering path is a directed polygonal path that visits all the points. We show that for any n points in the plane, there exists a (possibly self-crossing) covering path consisting of n/2 + O(n/logn) straight line segments. If no three points are collinear, any covering path (self-crossing or non-crossing) needs at least n/2 segments. If the path is required to be non-crossing, n − 1 straight line segments obviously suffice and we exhibit n-element point sets which require at least 5n/9 − O(1) segments in any such path. Further, we show that computing a non-crossing covering path for n points in the plane requires Ω(n logn) time in the worst case.

Keywords

Straight Line Segment Steiner Point Simple Polygon Supporting Line Left Endpoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aloupis, G.: A history of linear-time convex hull algorithms for simple polygons, http://cgm.cs.mcgill.ca/~athens/cs601/
  2. 2.
    Arkin, E.M., Mitchell, J.S.B., Piatko, C.D.: Minimum-link watchman tours. Inf. Proc. Lett. 86, 203–207 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bereg, S., Bose, P., Dumitrescu, A., Hurtado, F., Valtr, P.: Traversing a set of points with a minimum number of turns. Discrete Comput. Geom. 41(4), 513–532 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Brönnimann, H., Chan, T.M.: Space-efficient algorithms for computing the convex hull of a simple polygonal line in linear time. Comput. Geom. 34, 75–82 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–524 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chvátal, V., Klincsek, G.: Finding largest convex subsets. Congressus Numerantium 29, 453–460 (1980)MathSciNetGoogle Scholar
  7. 7.
    Collins, M.J.: Covering a set of points with a minimum number of turns. Internat. J. Comput. Geom. Appl. 14(1-2), 105–114 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Collins, M.J., Moret, M.E.: Improved lower bounds for the link length of rectilinear spanning paths in grids. Inf. Proc. Lett. 68, 317–319 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Demaine, E.D., O’Rourke, J.: Open problems from CCCG 2010. In: Proc. 23rd Canadian Conf. Comput. Geom., Toronto, ON, pp. 153–156 (2011)Google Scholar
  10. 10.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Mathematica 2, 463–470 (1935)MathSciNetGoogle Scholar
  11. 11.
    Erdős, P., Szekeres, G.: On some extremum problems in elementary geometry. Annales Univ. Sci. Budapest 3-4, 53–62 (1960-1961)Google Scholar
  12. 12.
    Estivill-Castro, V., Heednacram, A., Suraweera, F.: NP-completeness and FPT results for rectilinear covering problems. Journal of Universal Computer Science 15, 622–652 (2010)MathSciNetGoogle Scholar
  13. 13.
    Fulek, R., Keszegh, B., Morić, F., Uljarević, I.: On polygons excluding point sets. In: Proc. 22nd Canadian Conf. Comput. Geom., Winnipeg, MB, pp. 273–276 (2010)Google Scholar
  14. 14.
    Gerbner, D., Keszegh, B.: Personal Communication (July 2012)Google Scholar
  15. 15.
    Jiang, M.: On Covering Points with Minimum Turns. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) FAW-AAIM 2012. LNCS, vol. 7285, pp. 58–69. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Kranakis, E., Krizanc, D., Meertens, L.: Link length of rectilinear hamiltonian tours in grids. Ars Combinatoria 38, 177–192 (1994)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Melkman, A.: On-line construction of the convex hull of a simple polygon. Inf. Proc. Lett. 25(1), 11–12 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, ch. 15, pp. 633–701. Elsevier (2000)Google Scholar
  20. 20.
    Morić, F.: Separating and covering points in the plane. Communication at the Open Problem Session of the 22nd Canadian Conf. Comput. Geom., Winnipeg, MB (2010)Google Scholar
  21. 21.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)CrossRefGoogle Scholar
  22. 22.
    Stein, C., Wagner, D.P.: Approximation Algorithms for the Minimum Bends Traveling Salesman Problem. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 406–421. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Welzl, E.: Separating and covering points in the plane. In: Communication at the 9th Gremo’s Workshop on Open Problems, Switzerland (February 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Adrian Dumitrescu
    • 1
  • Csaba D. Tóth
    • 2
  1. 1.Computer ScienceUniversity of Wisconsin–MilwaukeeUSA
  2. 2.Mathematics and StatisticsUniversity of CalgaryCanada

Personalised recommendations