Rule Agent-Oriented Scientific Workflow Execution

  • Zhili Zhao
  • Adrian Paschke
Part of the Communications in Computer and Information Science book series (CCIS, volume 360)

Abstract

Over the last decade, scientific workflows have been become a remarkable paradigm, which integrates distributed heterogeneous computational and data resources and assists scientists to perform data management, analysis, simulation in silico experiments. However, compared to traditional business workflows, scientific processes still haven’t been widely addressed and shared because of their extra requirements. In this paper, inspired by the spirit of subject-oriented business process management (S-BPM), we propose a rule agent-oriented approach to model weakly-structured scientific processes, where each agent has an internal behavior and the scientific workflow execution is driven by the messaging between distributed rule agents. As a proof-of-concept implementation we use the Web rule language Prova to declaratively represent the knowledge-intensive scientific logic as semantic rules, wrapped in the agents, and to support message-driven conversation-based interactions between these rule-based agents.

Keywords

Agents Scientific Workflows Weakly-structured Rules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Language for Web Services Version 1.1. Technical report, BEA, IBM, Microsoft, SAP, Siebel (2003)Google Scholar
  2. 2.
    Barga, R., Gannon, D.: Scientific versus Business Workflows. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science, pp. 9–16. Springer, London (2007)CrossRefGoogle Scholar
  3. 3.
    Barker, A., van Hemert, J.: Scientific Workflow: A Survey and Research Directions. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 746–753. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Barker, A., Mann, R.G.: Agent-Based Scientific Workflow Composition, vol. 351, pp. 485–488 (2006)Google Scholar
  5. 5.
    Barker, A., Mann, R.G.: Flexible Service Composition. In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149, pp. 446–460. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Buhler, P.A., Vidal, J.M.: Adaptive Workflow = Web Services + Agents. In: Proceedings of the International Conference on Web Services, pp. 131–137. CSREA Press (2003)Google Scholar
  7. 7.
    Schmidt, W., Stary, C., Obermeier, S., Börger, E., Fleischmann, A. (eds.): Subject-Oriented Business Process Management. Springer (2012)Google Scholar
  8. 8.
    Frincu, M., Craciun, C.: Dynamic and Adaptive Rule-Based Workflow Engine for Scientific Problems in Distributed Environments, ch. 10, pp. 227–251. CRC Press (2010)Google Scholar
  9. 9.
    Horrocks, I., Patel-Schneider, P.F.: Reducing OWL Entailment to Description Logic Satisfiability. Journal of Web Semantics, 17–29 (2003)Google Scholar
  10. 10.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Technical report, World Wide Web Consortium (May 2004)Google Scholar
  11. 11.
    Karastoyanova, D.: On Scientific Experiments and Flexible Service Compositions. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) Buchmann Festschrift. LNCS, vol. 6462, pp. 175–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Kozlenkov, A.: Prova Rule Language Version 3.0 User’s Guide. Technical report (2010)Google Scholar
  13. 13.
    Lam, J., Guerin, F., Vasconcelos, W., Norman, T.J.: Building Multi-Agent Systems for Workflow Enactment and Exception Handling. In: Padget, J., Artikis, A., Vasconcelos, W., Stathis, K., da Silva, V.T., Matson, E., Polleres, A. (eds.) COIN 2009. LNCS, vol. 6069, pp. 53–69. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Lu, S., Zhang, J.: Collaborative Scientific Workflows. In: Proceedings of the IEEE International Conference on Web Services, Los Angeles, CA, USA, pp. 527–534. IEEE (2009)Google Scholar
  15. 15.
    Lucian, M.: Building a Scalable Enterprise Applications Using Asynchronous IO and SEDA Model. Technical report, TheServerSide.com (2008)Google Scholar
  16. 16.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific Workflow Management and The Kepler System. Concurrency - Practice and Experience 18(10), 1039–1065 (2006)CrossRefGoogle Scholar
  17. 17.
    Paschke, A.: Rule Responder HCLS eScience Infrastructure. In: Proceedings of the 3rd International Conference on the Pragmatic Web: Innovating the Interactive Society, ICPW 2008, pp. 59–67. ACM, New York (2008)CrossRefGoogle Scholar
  18. 18.
    Paschke, A.: A Semantic Rule and Event Driven Approach for Agile Decision-Centric Business Process Management. In: Abramowicz, W., Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.) ServiceWave 2011. LNCS, vol. 6994, pp. 254–267. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction RuleML 1.0: Standardized Semantic Reaction Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 100–119. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Paschke, A., Vincent, P., Springer, F.: Standards for Complex Event Processing and Reaction Rules. In: Proceedings of the 5th International Conference on Rule-Based Modeling and Computing on the Semantic Web, RuleML 2011, pp. 128–139. Springer, Heidelberg (2011)Google Scholar
  21. 21.
    Paschke, A., Zhao, Z.: Process Makna - A Semantic Wiki for Scientific Workflows. CoRR, abs/1012.1643 (2010)Google Scholar
  22. 22.
    Paschke, Z., Zhao, Z.: Rule Responder: A Rule-Based Semantic eScience Service Infrastructure. In: Burger, A., Scott Marshall, M., Romano, P., Paschke, A., Splendiani, A. (eds.) SWAT4LS. CEUR Workshop Proceedings, vol. 698. CEUR-WS.org (2010)Google Scholar
  23. 23.
    Bayer Environmental Science. Ant Identification Guide (2010)Google Scholar
  24. 24.
    Sonntag, M., Karastoyanova, D., Leymann, F.: The Missing Features of Workflow Systems for Scientific Computations. In: Proceedings of the 3rd Grid Workflow Workshop (GWW), Software Engineering Conference, GI-edn. GI-Edition Lecture Notes in Informatics (LNI), vol. P-160, pp. 209–216. Gesellschaft für Informatik e.V., GI (February 2010)Google Scholar
  25. 25.
    Tolosana-Calasanz, R., Bañares, J.A., Rana, O.F., Álvarez, P., Ezpeleta, J., Hoheisel, A.: Adaptive Exception Handling for Scientific Workflows. Concurr. Comput.: Pract. Exper. 22(5), 617–642 (2010)Google Scholar
  26. 26.
    Weigand, H., Van Den Heuvel, W.-J., Hiel, M.: Rule-Based Service Composition and Service-Oriented Business Rule Management. In: Proceedings of the International Workshop on Regulations Modelling and Deployment, pp. 1–12. Citeseer (2008)Google Scholar
  27. 27.
    Welsh, M., Culler, D.E., Brewer, E.A.: SEDA: An Architecture for Well-conditioned, Scalable Internet Services. SIGOPS Oper. Syst. Rev. 35, 230–243 (2001)CrossRefGoogle Scholar
  28. 28.
    Welsh, M., Culler, D.E., Brewer, E.A.: SEDA: An Architecture for Well-Conditioned, Scalable Internet Services. In: SOSP, pp. 230–243Google Scholar
  29. 29.
    Yildiz, U., Guabtni, A., Ngu, A.H.H.: Business versus Scientific Workflows: A Comparative Study. In: Proceedings of the 2009 Congress on Services - I, SERVICES 2009, pp. 340–343. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  30. 30.
    Ellisman, M.H., Fahringer, T., Fox, G., Gannon, D., Goble, C.A., Livny, M., Moreau, L., Myers, J., Gil, Y., Deelman, E.: Examining the Challenges of Scientific Workflows. IEEE Computer 40(12), 24–32 (2007)CrossRefGoogle Scholar
  31. 31.
    Zhao, Z., Teymourian, K., Paschke, A., Boley, H., Athan, T.: Loosely-Coupled and Event-Messaged Interactions with Reaction RuleML 1.0 in Rule Responder. In: Proceedings of the 6th International Rule Challenge at RuleML 2012 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhili Zhao
    • 1
  • Adrian Paschke
    • 1
  1. 1.Institute of Computer Science, Corporate Semantic Web Work GroupFreie Universität BerlinBerlinGermany

Personalised recommendations