Formula Preprocessing in MUS Extraction

  • Anton Belov
  • Matti Järvisalo
  • Joao Marques-Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7795)

Abstract

Efficient algorithms for extracting minimally unsatisfiable subformulas (MUSes) of Boolean formulas find a wide range of applications in the analysis of systems, e.g., hardware and software bounded model checking. In this paper we study the applicability of preprocessing techniques for Boolean satisfiability (SAT) in the context of MUS extraction. Preprocessing has proven to be extremely important in enabling more efficient SAT solving. Hence the study of the applicability and the effectiveness of preprocessing in MUS extraction is highly relevant. Considering the extraction of both standard and group MUSes, we focus on a number of SAT preprocessing techniques, and formally prove to what extent the techniques can be directly applied in the context of MUS extraction. Furthermore, we develop a generic theoretical framework that captures MUS extraction problems, and enables formalizing conditions for correctness-preserving applications of preprocessing techniques that are not applicable directly. We experimentally evaluate the effect of preprocessing in the context of group MUS extraction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In: Proc. AAAI, pp. 613–619. AAAI Press (2002)Google Scholar
  2. 2.
    Belov, A., Marques-Silva, J.: Generalizing redundancy in propositional logic: Foundations and hitting sets duality. Tech. rep., arXiv (2012), http://arxiv.org/abs/1207.1257
  3. 3.
    Belov, A., Marques-Silva, J.: MUSer2: An efficient MUS extractor. J. SAT 8, 123–128 (2012)Google Scholar
  4. 4.
    Belov, A., Ivrii, A., Matsliah, A., Marques-Silva, J.: On Efficient Computation of Variable MUSes. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 298–311. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–150 (2009)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Fourdrinoy, O., Grégoire, É., Mazure, B., Saïs, L.: Eliminating Redundant Clauses in SAT Instances. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 71–83. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Gershman, R., Strichman, O.: Cost-Effective Hyper-Resolution for Preprocessing CNF Formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 423–429. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of Boolean clauses. In: Proc. ICTAI, pp. 74–83. IEEE (2008)Google Scholar
  10. 10.
    Han, H., Somenzi, F.: Alembic: An efficient algorithm for CNF preprocessing. In: Proc. DAC, pp. 582–587. IEEE (2007)Google Scholar
  11. 11.
    Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF Simplification Based on Binary Implication Graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 201–215. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Heule, M., Järvisalo, M., Biere, A.: Clause Elimination Procedures for CNF Formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Heule, M., Järvisalo, M., Biere, A.: Covered clause elimination. In: LPAR Short Paper (2010)Google Scholar
  14. 14.
    Järvisalo, M., Biere, A., Heule, M.: Blocked Clause Elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Järvisalo, M., Heule, M., Biere, A.: Inprocessing Rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97, 149–176 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, C., Manyà, F., Mohamedou, N., Planes, J.: Resolution-based lower bounds in MaxSAT. Constraints 15, 456–484 (2010)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    van Maaren, H., Wieringa, S.: Finding Guaranteed MUSes Fast. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Marques-Silva, J.: Computing minimally unsatisfiable subformulas: State of the art and future directions. J. Mult-Valued Log. S. 19(1-3), 163–183 (2012)MathSciNetGoogle Scholar
  21. 21.
    Marques-Silva, J., Lynce, I.: On Improving MUS Extraction Algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proc. FMCAD, pp. 221–229. IEEE (2010)Google Scholar
  23. 23.
    Ryvchin, V., Strichman, O.: Faster Extraction of High-Level Minimal Unsatisfiable Cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anton Belov
    • 1
  • Matti Järvisalo
    • 2
  • Joao Marques-Silva
    • 1
    • 3
  1. 1.Complex and Adaptive Systems LaboratoryUniversity College DublinIreland
  2. 2.HIIT & Department of Computer ScienceUniversity of HelsinkiFinland
  3. 3.IST/INESC-IDLisbonPortugal

Personalised recommendations