Advertisement

Synthesis of Circular Compositional Program Proofs via Abduction

  • Boyang Li
  • Isil Dillig
  • Thomas Dillig
  • Ken McMillan
  • Mooly Sagiv
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7795)

Abstract

This paper presents a technique for synthesizing circular compositional proofs of program correctness. Our technique uses abductive inference to decompose the proof into small lemmas, which are represented as small program fragments annotated with pre and post-conditions. Different tools are used to discharge each different lemma, combining the strengths of different verifiers. Furthermore, each lemma concerns the correctness of small syntactic fragments of the program, addressing scalability concerns. We have implemented this technique and used it combine four different verification tools. Our experiments show that our technique can be successfully used to verify applications that cannot be verified by any individual technique.

Keywords

Satisfying Assignment Loop Body Proof Rule Abductive Inference Weak Precondition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Gupta, A., Mcmillan, K.L., Fu, Z.: Automated assumption generation for compositional verification. Form. Methods Syst. Des. (2008)Google Scholar
  3. 3.
    Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means of bi-abduction. In: POPL, vol. 44(1), pp. 289–300 (2009)Google Scholar
  4. 4.
    Peirce, C.: Collected papers of Charles Sanders Peirce. Belknap Press (1932)Google Scholar
  5. 5.
    Dillig, I., Dillig, T., McMillan, K.L., Aiken, A.: Minimum Satisfying Assignments for SMT. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 394–409. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Dillig, I., Dillig, T., Aiken, A.: SAIL: Static Analysis Intermediate Language. Stanford University Technical ReportGoogle Scholar
  7. 7.
    Dillig, I., Dillig, T., Aiken, A.: Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–239. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints among Variables of a Program. In: POPL, pp. 84–96. ACM (1978)Google Scholar
  10. 10.
    Jeannet, B.: Interproc analyzer for recursive programs with numerical variables, http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
  11. 11.
    Granger, P.: Static Analysis of Linear Congruence Equalities Among Variables of a Program. In: Abramsky, S. (ed.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493, pp. 169–192. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    Dillig, I., Dillig, T., Aiken, A.: Fluid Updates: Beyond Strong vs. Weak Updates. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers. In: POPL (2011)Google Scholar
  14. 14.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL, pp. 269–282. ACM (1979)Google Scholar
  15. 15.
    McMillan, K.L.: Verification of Infinite State Systems by Compositional Model Checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Gulwani, S., Tiwari, A.: Combining abstract interpreters. ACM SIGPLAN Notices 41, 376–386 (2006)CrossRefGoogle Scholar
  17. 17.
    Charlton, N., Huth, M.: Hector: Software Model Checking with Cooperating Analysis Plugins (Tool Paper). In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 168–172. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical domains. In: POPL, pp. 235–246. ACM (2008)Google Scholar
  19. 19.
    Giacobazzi, R.: Abductive analysis of modular logic programs. In: Proceedings of the 1994 International Symposium on Logic programming, pp. 377–391. Citeseer (1994)Google Scholar
  20. 20.
    Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive inference. In: PLDI (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Boyang Li
    • 1
  • Isil Dillig
    • 1
  • Thomas Dillig
    • 1
  • Ken McMillan
    • 2
  • Mooly Sagiv
    • 3
  1. 1.College of William & MaryUSA
  2. 2.Microsoft ResearchUSA
  3. 3.Tel Aviv UniversityIsrael

Personalised recommendations