The Life of π: From Archimedes to ENIAC and Beyond

  • Jonathan M. Borwein


The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians— great and less great — for many centuries. And, especially recently, π has provided compelling examples of computational mathematics. π, uniquely in mathematics, is pervasive in popular culture and the popular imagination. In this paper, I intersperse a largely chronological account of π’s mathematical and numerical status with examples of its ubiquity.


Continue Fraction Decimal Digit Binary Digit Correct Digit Digit String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amoroso, F., Viola, ?, 2008. Irrational and transcendental numbers. In: Bartocci, C, Odifreddi, P. (eds.), Mathematics and Culture, Volume II. La matematica: Problemi e teoremi. Turino: Guilio Einaudi Editori.Google Scholar
  2. Arndt, J., Haenel, C, 2001. Pi Unleashed. Springer-Verlag, New York.CrossRefzbMATHGoogle Scholar
  3. Bailey, D.H., Borwein, J.M., 2011. Exploratory experimentation and computation. Notices of the American Mathematical Society 58, 1410–1419.MathSciNetzbMATHGoogle Scholar
  4. Bailey, D., Borwein, J., Calkin, N., Girgensohn, R., Luke, R., Moll, V, 2007. Experimental Mathematics in Action. A.K. Peters, Wellesley, MA.Google Scholar
  5. Bailey, D.H., Borwein, J.M., Mattingly, A., Wightwick, G., 2013. The computation of previously inaccessible digits of π2 and Catalan's Constant. Notices of the American Mathematical Society 50, 844–854.MathSciNetCrossRefGoogle Scholar
  6. Berggren, L., Borwein, J.M., Borwein, P.B., 2004. Pi: A Source Book, 3rd edition. New York, Springer.Google Scholar
  7. Baruah, N.D., Berndt, B.C., Chan, H.H., 2009. Ramanujan's series for l/π: A survey. American Mathematical Monthly 116, 567–587.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Blatner, D., 1997. The Joy of Pi. Walker and Co., New York.Google Scholar
  9. Borwein, J.M., 1998. Brouwer-Heyting sequences converge. Mathematical Intelligencer 20, 14–15.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Borwein, J.M., 2008. La vita di pi greco: from Archimedes to ENIAC and beyond, in Bartocci, C, Odifreddi, P. (eds.), Mathematics and Culture, Volume II. La matematica: Problemi e teoremi, Guilio Einaudi Editori, Turino, pp. 249–285.Google Scholar
  11. Borwein, J.M., Bailey, D.H., 2008. Mathematics by Experiment: Plausible Reasoning in the 21st Century, 2nd expanded edition. A.K. Peters, Wellesley, MA. ĄGoogle Scholar
  12. Borwein, J.M., Borwein, P.B., 1987. Pi and the AGM. Wiley, New York.zbMATHGoogle Scholar
  13. ——— 1988. Ramanujan and Pi. Scientific American 256, 112–117. Reprinted in: Berndt, B.C., Rankin, R.A. (eds.), 2001, Ramanujan: Essays and Surveys. American Mathematical Society, Providence, pp. 187–199. (Also in: Berggren, Borwein and Borwein [2004].)Google Scholar
  14. Borwein, J.M., Borwein, P.B., Bailey, D.H., 1989. Ramanujan, modular equations and approximations to pi or how to compute one billion digits of pi. American Mathematical Monthly 96, 201–219. Reprinted in: Organic Mathematics Proceedings,, 1996. (Also in: Berggren, Borwein and Borwein [2004].)
  15. Borwein, J., Nuyens, D., Straub, A., Wan, J., 2011 Some arithmetic properties of short random walk integrals. The Ramanujan Journal 26, 109–132.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Churchland, P., 2007. Neurophilosophy at Work. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  17. Eymard, P., Lafon, J.-R, 2003. The Number π. American Mathematical Society, Providence.Google Scholar
  18. Guillera, J., 2008a. Hypergeometric identities for 10 extended Ramanujan-type series. Ramanujan Journal 15, 219–234.MathSciNetCrossRefzbMATHGoogle Scholar
  19. ——— 2008b. Easy proofs of some Borwein algorithms for π. American Mathematical Monthly 115, 850–854.MathSciNetzbMATHGoogle Scholar
  20. Heath, T.L., 1912. The Works of Archimedes, Cambridge University Press, Cambridge.Google Scholar
  21. Lucas, S.K., 2009. Integral approximations to pi with nonnegative integrands. American Mathematical Monthly 116, 166–172.MathSciNetCrossRefzbMATHGoogle Scholar
  22. McCartney, S., 1999. ENIAC: The Triumphs and Tragedies of the World's First Computer. Walker and Co., New York.Google Scholar
  23. Schioper, H.C., The chronology of pi. Mathematics Magazine 23, 165–170, 216–228, 279–283. (Also in: Berggren, Borwein and Borwein [2004].)Google Scholar
  24. Singmaster, D., 1985. The legal values of Pi. Mathematical Intelligencer 7, 69–72. (Also in: Berggren, Borwein and Borwein [2004].)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Tsumura, H., 2004. An elementary proof of Euler's formula for ζ(2η). American Mathematical Monthly, 430–431.Google Scholar
  26. von Baeyer, H.C., 2003. Information: The New Language of Science. Harvard University Press, Cambridge, MA.Google Scholar
  27. Zudilin, W., 2008. Ramanujan-type formulae for Ι/π: A second wind. ArXiv:0712.1332v2.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jonathan M. Borwein
    • 1
  1. 1.NewcastleAustralia

Personalised recommendations