Advertisement

Archimedes Among the Ottomans: An Updated Survey

  • İhsan Fazlıoğlu
  • F. Jamil Ragep
Chapter

Abstract

This paper provides a survey of Archimedean material that was produced and disseminated during the Ottoman period, mainly in the city of Istanbul. Moving from the founding figures of Ottoman science such as Dāwūd al-Qayṣarī and Muḥlammad al-Fanā in the fourteenth and fifteenth centuries to Muṣṭafā Ṣidqī in the eighteenth-century, the article discusses Ottoman work in several areas of Archimedean mathematics and science: 1) the number Pi; 2) Hydrostatics and Specific Gravity of Elements, for which an edition of a unique manuscript by Taqī al-Dīn al-Rāṣid is given in an appendix; 3) Geometry (e.g. the sphere and cylinder, squaring the circle, trisecting an acute angle, heptasecting a circle, and spiral lines). From an examination of the content of texts and extant manuscript witnesses, it is clear that Ottoman work on the Archimedean corpus owed a great debt to émigreé scholars and was closely connected with major Islamic centers oflearning such as the Marāgha Observatory and the Samarqand School; at the same time Ottoman scholars themselves made numerous contributions to the Archimedean heritage.

Keywords

Specific Gravity Acute Angle Geometrical Algebra Fifteenth Century Mathematical Work 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ͑Abd al-Latīf, ͑Alī Ishāq, 1993. Ibn al-Haytham: ͑ālim al-handasa al-riyādiyya: dirāsa tahlīliyya wa-tahqīq. al-Jāmi͑a al-Urduniyyah, Amman.Google Scholar
  2. Adivar, A., 1943. Osmanh Türklerinde İlim. Maarif matbaasi, Istanbul.Google Scholar
  3. Berggren, J.L., 1986. Episodes in the Mathematics of Medieval Islam. Springer-Verlag, New York.zbMATHGoogle Scholar
  4. ——— 1987. Archimedes among the Ottomans. In: Berggren, J.L., Goldstein, B.R. (eds.), From Ancient Omens to Statistical Mechanics: Essays on the Exact Sciences. Acta Historica Scientiarum Naturalium et Medicinalium, vol. 39. University Library, Copenhagen, pp. 101–109.Google Scholar
  5. Bir, A., Kaçar, M., 2003. Bedrettin Muhammed el-İstanbuli’nin Teslis-i Zaviye (Trisecting the angle) ve Tesbi’-i Da’ire (Heptagoning the circle) Risaleleri. Osmanh Bilimi Arastirmalari 4/2, 1–20.Google Scholar
  6. Djebbar, A., 1997. La rédaction de L’istikmāl d’al-Mu͑taman (XIe s.) par Ibn Sartāq, un mathématicien des XIIIe-XIVe siècles. Historia Mathematica 24, 185–192.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Fazlioğlu, I., 1996. İlk Dönem Osmanh İlim ve Küultür Hayatinda İhvânu’s-Safâ ve Abdurrahman Bistâmî. Dîvân İlmî Arastirmalar Dergisi 2, 229–240.Google Scholar
  8. ——— 1998. Osmanh Coğrafyasinda İlmî Hayatin Tesekkülü ve Davud el-Kayserî. In: Koç, T. (ed.), Uluslararasi XIII. ve XIV. Yüzyillarda Anadolu’da Islam Düşüncesi ve Davud el-Kayserî Sempozyumu. Kayseri Büyükşehir Belediyesi Kültür Müdürlüğü, Kayseri, pp. 25–30.Google Scholar
  9. ——— 2004. Uygulamah Geometrinin Tarihine Giriş: el-İIkna fi ilmi’l-misaha. Dergah Yayinlari, Istanbul.Google Scholar
  10. ——— 2006. Mustafa Sidki. In: Giiran, K. (ed.), Türkiye Diyanet Vakfi İslam Ansiklopedisi, vol. 31. Türkiye Diyanet Vakfi, Istanbul, pp. 356–357.Google Scholar
  11. ——— 2008a. Altin-Orda Ülkesi’nde İlk Matematik Kitabi: Hesap Biliminde Şaheser [et-Tuhfe fî ilmi’l-hisâb]. In: Çakmak, C. (ed.), Teoman Durah’ya Armağan: Bir Felsefe-Bilim Çağrisi. Dergâh Yayinlari, Istanbul, pp. 224–259.Google Scholar
  12. ——— 2008b. The Samarqand mathematical-astronomical school: A basis for Ottoman philosophy and science. Journal for the History of Arabic Science 14, 3–68.Google Scholar
  13. ——— 2010. İthâf’tan Enmûzec’e Fetihten Önce Osmanh Ülkesi’nde Matematik Bilimler. In: Yüce-doğru, T., Kologlu, O., Kilavuz, U.M., Gömbeyaz, Κ. (eds.), Uluslararasi Molla Fenârî Sempozyumu (4–6 Aralik 2009 Bursa) (International symposium on Molla Fanārī, 4–6 December 2009 Bursa). Bursa Büyüksehir Belediyesi, Bursa, pp. 131–163.Google Scholar
  14. ——— 2012. İbn Sertâk [Muhammed Sertakoğlu]. http://www.ihsanfazlioglu.net/yayinlar/makaleler/l.php?id=166 (accessed 6 October 2012).Google Scholar
  15. Hogendijk, J.P., 1984. Greek and Arabic constructions of the regular heptagon. Archive for History of Exact Sciences 30, 197–330.MathSciNetCrossRefzbMATHGoogle Scholar
  16. ——— 2008/2009. Al-Kāshī’s determination of π to 16 decimals in an old manuscript. Zeitschrift für Geschichte der arabisch-islamischen Wissenschaften 18, 73–153.MathSciNetGoogle Scholar
  17. İhsanoğlu, E. et al. (eds.), 1997. Osmanh Astronomi Literatürü Tarihi (History of Astronomy Literature During the Ottoman Period). 2 vols. IRCICA, Istanbul.Google Scholar
  18. ——— 1999. Osmanli Matematik Literatürü Tarihi (History of Mathematical Literature During the Ottoman Period). 2 vols. IRCICA, Istanbul.Google Scholar
  19. ——— 2006. Osmanli Tabii ve Tatbiki İlimler Literatürü Tarihi (History of the Literature of Natural and Applied Sciences During The Ottoman Period). 2 vols. IRCICA, Istanbul.Google Scholar
  20. İzgi, C, 1997. Osmanli Medreselerinde İlim. 2 vols. İz, Istanbul.Google Scholar
  21. Knorr, W.R., 1989. On Archimedes’ construction of the regular heptagon. Centaurus 32, 257–271.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Lutfallāh al-Tūqātī (Molla Lutfī), 1940. La duplication de l’autel (Platon et le problème de Délos), texte arabe publié par Serefettin Yaltkaya, traduction française et introd. par Abdülhak Adnan Adivar et Henry Corbin. E. de Boccard, Paris.Google Scholar
  23. Mawaldi, M., 1994. Kamāl al-Dīn al-Fārisī’s Asās al-qawā’id fî usül al-fawā͑id. Institute of Arabie Manuscripts, Cairo.Google Scholar
  24. OMALT = İhsanoğlu, ?. et al. (eds.), 1999.Google Scholar
  25. Ragep, EJ., 2010. Astronomy in the Fanārī-Circle: The critical background for Qādīzāde al-Rūmī and the Samarqand school. In: Yücedoğru, T., Koloğlu, O., Kilavuz, U.M., Gömbeyaz, Κ. (eds.), Uluslararasi Molla Fenârî Sempozyumu (4–6 Aralik 2009 Bursa) (International symposium on Molla Fanārī, 4–6 December 2009 Bursa). Bursa Büyükşehir Belediyesi, Bursa, pp. 165–176.Google Scholar
  26. Rosenfeld, B.A., İhsanoğlu, E. (eds.), 2003. Mathematicians, Astronomers & Other Scholars of Islamic Civilisation and Their Works (7th-19th c). IRCICA, Istanbul.Google Scholar
  27. Rozhanskaya, M. (in collaboration with Levinova, I.S.), 1996. Statics. In: Rashed, R., Morelon, R. (eds.), Encyclopedia of the History of Arabic Science. 3 vols. Routledge, London and New York, vol. 2, pp. 614–642.Google Scholar
  28. Salim, M.E., 1315 H. Tezkire-i Salim, Edited by Paşa Ahmet Cevdet. İIkdam Matbaasi, Der Saadet. Şeşen, R., 1997. Mukhtārāt min al-makhtūtāt al-͑Arabiyya al-nādira fī maktabāt Turkiyya. Waqf al-abhāth li-͑l-tārīkh wa-͑l-funūn wa-͑l-thaqāfa al-islāmiyya (ĪSĀR), Istanbul.Google Scholar
  29. Wiedemann, ?., 1970. Über Bestimmung der spezifischen Gewichte (=Beiträge zur Geschichte der Naturwissenschaften. VIII.). In: Wiedemann, ?., Aufsätze zur arabischen Wissenschaftsgeschichte, 2 vols. Georg Olms Verlag, Hildesheim and New York, vol. 1, pp. 240–257 (pp. 163–180 in the original pagination).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • İhsan Fazlıoğlu
    • 1
  • F. Jamil Ragep
    • 2
  1. 1.IstanbulTurkey
  2. 2.MontrealCanada

Personalised recommendations