Saliency-Guided Consistent Color Harmonization

  • Yoann Baveye
  • Fabrice Urban
  • Christel Chamaret
  • Vincent Demoulin
  • Pierre Hellier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7786)


The focus of this paper is automatic color harmonization, which amounts to re-coloring an image so that the obtained color palette is more harmonious for human observers. The proposed automatic algorithm builds on the pioneering works described in [3,12] where templates of harmonious colors are defined on the hue wheel. We bring three contributions in this paper: first, saliency [9] is used to predict the most attractive visual areas and estimate a consistent harmonious template. Second, an efficient color segmentation algorithm, adapted from [4], is proposed to perform consistent color mapping. Third, a new mapping function substitutes usual color shifting method. Results show that the method limits the visual artifacts of state-of-the-art methods and leads to a visually consistent harmonization.


color harmonization color segmentation color mapping saliency visual attention 


  1. 1.
    Birren, F.: A grammar of color, a basic treatise on the color system of albert h. munsell (1969)Google Scholar
  2. 2.
    Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, vol. 1, pp. 105–112. IEEE (2001)Google Scholar
  3. 3.
    Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Xu, Y.Q.: Color harmonization. ACM Transactions on Graphics (TOG) 25, 624–630 (2006)CrossRefGoogle Scholar
  4. 4.
    Delon, J., Desolneux, A., Lisani, J.-L., Petro, A.-B.: A nonparametric approach for histogram segmentation. IEEE Transactions on Image Processing 16(1), 253–261 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Holtzschue, L.: Understanding color: an introduction for designers. Wiley, Hoboken (2011)Google Scholar
  6. 6.
    Huo, X., Tan, J.: An improved method for color harmonization. In: 2nd International Congress on Image and Signal Processing, pp. 1–4 (October 2009)Google Scholar
  7. 7.
    Itten, J.: The art of color: the subjective experience and objective rationale of color. Van Nostrand Reinhold, New York (1973)Google Scholar
  8. 8.
    Kawamoto, N.: Objective evaluation of color design. iii. Color Research & Application 20(1), 62–69 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Le Meur, O., Le Callet, P., Barba, D., Thoreau, D.: A coherent computational approach to model bottom-up visual attention. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 802–817 (2006)CrossRefGoogle Scholar
  10. 10.
    Li, C., Chen, T.: Aesthetic visual quality assessment of paintings. IEEE Journal of Selected Topics in Signal Processing 3(2), 236–252 (2009)CrossRefGoogle Scholar
  11. 11.
    Machajdik, J., Hanbury, A.: Affective image classification using features inspired by psychology and art theory. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 83–92. ACM, New York (2010)Google Scholar
  12. 12.
    Matsuda, Y.: Color design. Asakura Shoten (1995)Google Scholar
  13. 13.
    Mayer, T.: On the relationships between colors. Color Research & Application 25(1), 66–74 (2000)CrossRefGoogle Scholar
  14. 14.
    Ostwald, W., Birren, F.: The Color Primer: A Basic Treatise on the Color System of Wilhelm Ostwald. Van Nostrand Reinhold Co. (1969)Google Scholar
  15. 15.
    Ou, L.-C., Ronnier Luo, M.: A colour harmony model for two-colour combinations. Color Research & Application 31(3), 191–204 (2006)CrossRefGoogle Scholar
  16. 16.
    Przemyslaw, S., Michal, K.: Investigating human color harmony preferences using unsupervised machine learning. In: European Conference on Colour in Graphics, Imaging, and Vision, pp. 59–64 (2012)Google Scholar
  17. 17.
    Sawant, N., Mitra, N.J.: Color harmonization for videos. In: Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 576–582 (2008)Google Scholar
  18. 18.
    Sivik, L., Hrd, A.: Some reflections on studying colour combinations. Color Research & Application 19(4), 286–295 (1994)CrossRefGoogle Scholar
  19. 19.
    Solli, M., Lenz, R.: Color harmony for image indexing. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1885–1892 (2009)Google Scholar
  20. 20.
    Sutton, T.: The complete color harmony. Rockport publishers, Massachusetts (2004)Google Scholar
  21. 21.
    Tang, Z., Miao, Z., Wan, Y.: Image composition with color harmonization. In: 2010 25th International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–8 (November 2010)Google Scholar
  22. 22.
    Tang, Z., Miao, Z., Wan, Y., Jesse, F.F.: Colour harmonization for images and videos via two-level graph cut. Image Processing, IET 5(7), 630–643 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yoann Baveye
    • 1
  • Fabrice Urban
    • 1
  • Christel Chamaret
    • 1
  • Vincent Demoulin
    • 1
  • Pierre Hellier
    • 1
  1. 1.Technicolor Research and InnovationRennesFrance

Personalised recommendations