How Bright Is the Moon? Recovering and Using Absolute Luminance Values from Internet Images

  • Jens Ackermann
  • Michael Goesele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7786)

Abstract

The human visual system differs from a camera in various aspects such as spatial resolution, brightness sensitivity, dynamic range, or color perception. Several of these effects depend on the absolute luminance distribution entering the eye which is not readily available from camera images. In this paper, we argue that absolute luminance is important for correct image reproduction. We investigate to which extent it is possible to recover absolute luminance values for any pixel in images taken from the Internet, extending previous studies on camera calibration in laboratory settings that are much less challenging. We use the Moon as a calibration target to estimate the remaining error. We then evaluate this error in the context of perceptual tonemapping for low dynamic range images.

Keywords

luminance Internet photo collections calibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lunar calibration, USGS robotic lunar observatory (ROLO), www.moon-cal.org
  2. 2.
    Buratti, B., Hillier, J., Wang, M.: The lunar opposition surge: Observations by Clementine. Icarus (1996)Google Scholar
  3. 3.
    Chakrabarti, A., Scharstein, D., Zickler, T.: An empirical camera model for internet color vision. In: BMVC, pp. 51.1–51.11 (2009)Google Scholar
  4. 4.
    Darula, S., Kittler, R.: CIE general sky standard defining luminance distributions. In: Proc. eSim (2002)Google Scholar
  5. 5.
    Durand, F., Dorsey, J.: Interactive tone mapping. In: EGWR (2000)Google Scholar
  6. 6.
    Ellis, D.: Illumination Received from the Moon. Journal of the Royal Astronomical Society of Canada (1966)Google Scholar
  7. 7.
    Ferwerda, J.A., Pattanaik, S.N., Shirley, P., Greenberg, D.P.: A model of visual adaptation for realistic image synthesis. In: SIGGRAPH, pp. 249–258 (1996)Google Scholar
  8. 8.
    Green, D.W.E.: Correcting for atmospheric extinction. International Comet Quarterly (1992)Google Scholar
  9. 9.
    Grossberg, M., Nayar, S.: Modeling the space of camera response functions. PAMI 26(10), 1272–1282 (2004)CrossRefGoogle Scholar
  10. 10.
    Hapke, B.: An Improved Theoretical Lunar Photometric Function. The Astronomical Journal (1966)Google Scholar
  11. 11.
    Hernitschek, N., Schmidt, E., Vollmer, M.: Lunar eclipse photometry: absolute luminance measurements and modeling. Applied Optics 47(34), 62–71 (2008)CrossRefGoogle Scholar
  12. 12.
    ISO: Photography - digital still cameras - determination of exposure index, iso speed ratings, standard output sensitivity, and recommended exposure index (2006)Google Scholar
  13. 13.
    Jensen, H.W., Durand, F., Stark, M.M., Shirley, P., Dorsey, J., Premoze, S.: A physically-based night sky model. In: SIGGRAPH (2001)Google Scholar
  14. 14.
    Kieffer, H.H., Stone, T.C.: The spectral irradiance of the moon. The Astronomical Journal 129(6), 2887–2901 (2005)CrossRefGoogle Scholar
  15. 15.
    Kim, S.J., Pollefeys, M.: Robust radiometric calibration and vignetting correction. PAMI 30(4), 562–576 (2008)CrossRefGoogle Scholar
  16. 16.
    Krawczyk, G., Myszkowski, K., Seidel, H.P.: Perceptual effects in real-time tone mapping. In: SCCG (2005)Google Scholar
  17. 17.
    Kuthirummal, S., Agarwala, A., Goldman, D.B., Nayar, S.K.: Priors for Large Photo Collections and What They Reveal about Cameras. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 74–87. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Litvinov, A., Schechner, Y.Y.: Addressing radiometric nonidealities: A unified framework. In: CVPR, pp. 52–59 (2005)Google Scholar
  19. 19.
    Matsushita, Y., Lin, S.: Radiometric calibration from noise distributions. In: CVPR (2007)Google Scholar
  20. 20.
  21. 21.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.A.: Photographic tone reproduction for digital images. ACM Transactions on Graphics (2002)Google Scholar
  22. 22.
    Robertson, M.A., Borman, S., Stevenson, R.L.: Dynamic range improvement through multiple exposures. In: ICIP, pp. 159–163 (1999)Google Scholar
  23. 23.
    Shaler, S.: The relation between visual acuity and illumination. Journal of General Psychology (1937)Google Scholar
  24. 24.
    Spencer, G., Shirley, P., Zimmerman, K., Greenberg, D.P.: Physically-based glare effects for digital images. In: SIGGRAPH, pp. 325–334 (1995)Google Scholar
  25. 25.
    Verdú, F.M., Pujol, J., Vilaseca, M., Capilla, P.: Characterization of a digital camera as an absolute tristimulus colorimeter. J. of Imaging Science and Technology 47(4), 279–295 (2003)Google Scholar
  26. 26.
  27. 27.
    Ward Larson, G., Rushmeier, H., Piatko, C.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE TVCG 3(4) (1997)Google Scholar
  28. 28.
    Wüller, D., Gabele, H.: The usage of digital cameras as luminance meters. In: Proc. SPIE, vol. 6502, pp. 1–11 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jens Ackermann
    • 1
  • Michael Goesele
    • 1
  1. 1.TU DarmstadtGermany

Personalised recommendations