On the Uniform Sampling of CIELAB Color Space and the Number of Discernible Colors

  • Jean-Baptiste Thomas
  • Philippe Colantoni
  • Alain Trémeau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7786)

Abstract

This paper presents a useful algorithmic strategy to sample uniformly the CIELAB color space based on close packed hexagonal grid. This sampling scheme has been used successfully in different research works from computational color science to color image processing. The main objective of this paper is to demonstrate the relevance and the accuracy of the hexagonal grid sampling method applied to the CIELAB color space. The second objective of this paper is to show that the number of color samples computed depends on the application and on the color gamut boundary considered. As demonstration, we use this sampling to support a discussion on the number of discernible colors related to a JND.

Keywords

Sampling 3D close packed hexagonal grid perceptually uniform color space computational color imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrardo, A., Cappellini, V., Cappellini, M.: MECOCCI, A.: Art-works colour calibration using the vasari scanner. In: Color Imaging Conference, pp. 94–97. IS & T - The Society for Imaging Science and Technology (1996)Google Scholar
  2. 2.
    Catrysse, P.B., Wandell, B.A., EI Gamal, A.: Comparative analysis of color architectures for image sensors. In: Sampat, N., Yeh, T. (eds.) Proc. SPIE, vol. 3650, pp. 26–35 (1999)Google Scholar
  3. 3.
    CIE: 015:2004, Colorimetry, 3rd edn. Commission Internationale de l’Eclairage (2004)Google Scholar
  4. 4.
    Colantoni, P., Thomas, J.-B.: A Color Management Process for Real Time Color Reconstruction of Multispectral Images. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 128–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Colantoni, P., Thomas, J.B., Pillay, R.: Graph-based 3d visualization of color content in paintings. In: Proceedings of the 11th VAST International Symposium on Virtual Reality, Archaeology and Cultural Heritage, Paris, September 22-24, vol. 2, pp. 25–30 (September 2010)Google Scholar
  6. 6.
    Foss, C.E.: Space lattice used to sample the color space of the committee on uniform color scales of the optical society of america. J. Opt. Soc. Am. 68(11), 1616–1619 (1978)CrossRefGoogle Scholar
  7. 7.
    Gauss, C.F.: Disquisitiones arithmeticae. Apud G. Fleischer, Leipzig (1801); reprinted Springer, New-York (1986)Google Scholar
  8. 8.
    Gentile, R.S., Allebach, J.P., Walowit, E.: Quantization of color images based on uniform color spaces. Journal of Imaging Technology 16(1), 11–21 (1990)Google Scholar
  9. 9.
    Hales, T.C.: An overview of the kepler conjecture (1998)Google Scholar
  10. 10.
    Hardeberg, J.: Acquisition and reproduction of colour images: colorimetric and multispectral approaches. These de doctorat, Ecole Nationale Superieure des Telecommunications, ENST, Paris, France (January 1999)Google Scholar
  11. 11.
    Hill, B., Roger, T., Vorhagen, F.W.: Comparative analysis of the quantization of color spaces on the basis of the cielab color-difference formula. ACM Trans. Graph. 16, 109–154 (1997)CrossRefGoogle Scholar
  12. 12.
    Johnson, N.W.: Convex solids with regular faces. Canadian Journal of Mathematics 18, 169–200 (1966)MATHCrossRefGoogle Scholar
  13. 13.
    Judd, D.B., Wyszecki, G.: Color in business, science, and industry, 3rd edn. Wiley, New York (1975)Google Scholar
  14. 14.
    Kang, H.R. (ed.): Color technology for electronic imaging devices. SPIE Press (1997)Google Scholar
  15. 15.
    Kepler, J.: The six-cornered snowflake. Monograph (1611)Google Scholar
  16. 16.
    Linhares, J.M.M., Pinto, P.D., Nascimento, S.M.C.: The number of discernible colors in natural scenes. J. Opt. Soc. Am. A 25(12), 2918–2924 (2008)CrossRefGoogle Scholar
  17. 17.
    MacAdam, D.L.: Colorimetric data for samples of osa uniform color scales. J. Opt. Soc. Am. 68(1), 121–130 (1978)CrossRefGoogle Scholar
  18. 18.
    Mahy, M., Eycken, L.V.V., Oosterlinck, A.: Evaluation of uniform color spaces developed after the adoption of cielab and cieluv. Color Research & Application 19(2), 105–121 (1994)Google Scholar
  19. 19.
    Mahy, M., Van Mellaert, B., Van Eycken, L., Oosterlinks, A.: The influence of uniform color spaces on color image processing: a comparative study of cielab, cieluv, and atd. Journal of Imaging Technology 17(5), 232–243 (1991)Google Scholar
  20. 20.
    Morovic, J., Cheung, V., Morovic, P.: Why we dont know how many colors there are. In: CGIV (May 2012)Google Scholar
  21. 21.
    Pointer, M.R., Attridge, G.G.: The number of discernible colours. Color Research & Application 23, 52–54 (1998)CrossRefGoogle Scholar
  22. 22.
    Schläpfer, K.: Farbmetrik in der reproduktionstechnik und im mehrfarbendruck. In: Schweiz, S.G. (ed.) 2. Auflage UGRA (1993)Google Scholar
  23. 23.
    Stamm, S.: An investigation of color tolerance. In: TAGA Proceedings, pp. 156–173 (1981)Google Scholar
  24. 24.
    Stauder, J.F., Colatoni, P.F., Blonde, L.F.: Device and method for characterizing a colour device. EP1701555 (September 2006)Google Scholar
  25. 25.
    Stauder, J., Thollot, J., Colantoni, P., Tremeau, A.: Device, system and method for characterizing a colour device. European Patent WO/2007/116077, EP1845703 (October 2007)Google Scholar
  26. 26.
    Stokes, M., Fairchild, M.D., Berns, R.S.: Precision requirements for digital color reproduction. ACM Trans. Graph. 11(4), 406–422 (1992)MATHCrossRefGoogle Scholar
  27. 27.
    Thomas, J.B., Chareyron, G., Trémeau, A.: Image watermarking based on a color quantization process. Multimedia Content Access: Algorithms and Systems 6506(1), 650603 (2007)Google Scholar
  28. 28.
    Thomas, J.B., Trémeau, A.: A gamut preserving color image quantization. In: Proceedings of the 14th International Conference of Image Analysis and Processing - Workshops, ICIAPW 2007, pp. 221–226. IEEE Computer Society, Washington, DC (2007)Google Scholar
  29. 29.
    Tóth, F.: On the stability of a circle packing. Ann. Univ. Sci. Budapestinensis, Sect. Math. 3-4, 63–66 (1960/1961)Google Scholar
  30. 30.
    Trémeau, A., Konik, H., Lozano, V.: Limits of using a digital color camera for color image processing. In: Proceedings of the IS&T/OSA Optics & Imaging in the Information Age, Rochester, New York, October 20-24, pp. 150–155 (October 1996)Google Scholar
  31. 31.
    Urban, P., Schleicher, D., Rosen, M.R., Berns, R.S.: Embedding non-euclidean color spaces into euclidean color spaces with minimal isometric disagreement. Journal of the Optical Society of America A 24(6), 1516–1528 (2007)CrossRefGoogle Scholar
  32. 32.
    Wyszecki, G.: A regular rhombohedral lattice sampling of munsell renotation space. Journal of the Optical Society of America 44(9), 725–734 (1954)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jean-Baptiste Thomas
    • 1
  • Philippe Colantoni
    • 2
  • Alain Trémeau
    • 3
  1. 1.Laboratoire d’Electronique, Informatique et Image (LE2I)Université of BourgogneDijonFrance
  2. 2.Centre Interdisciplinaire d’Etudes et de Recherches sur l’Expression ContemporaineUniversité Jean MonnetSaint-ÉtienneFrance
  3. 3.Laboratoire Hubert CurienUniversité Jean MonnetSaint-ÉtienneFrance

Personalised recommendations