Minimum Clique Cover in Claw-Free Perfect Graphs and the Weak Edmonds-Johnson Property

  • Flavia Bonomo
  • Gianpaolo Oriolo
  • Claudia Snels
  • Gautier Stauffer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7801)


We give new algorithms for the minimum (weighted) clique cover in a claw-free perfect graph G, improving the complexity from O(|V(G)|5) to O(|V(G)|3). The new algorithms build upon neat reformulations of the problem: it basically reduces either to solving a 2-SAT instance (in the unweighted case) or to testing if a polyhedra associated with the edge-vertex incidence matrix of a bidirected graph has an integer solution (in the weighted case). The latter question was elegantly answered using neat polyhedral arguments by Schrijver in 1994. We give an alternative approach to this question combining pure combinatorial arguments (using techniques from 2-SAT and shortest paths) with polyhedral ones. Our approach is inspired by an algorithm from the Constraint Logic Programming community and we give as a side benefit a formal proof that the corresponding algorithm is correct (apparently answering an open question in this community). Interestingly, the systems we study have properties closely connected with the so-called Edmonds-Johnson property and we study some interesting related questions.


clique cover claw-free perfect graphs bidirected graphs Edmonds-Johnson property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aspvall, B., Plass, M., Tarjan, R.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bagnara, R., Hill, P.M., Zaffanella, E.: An Improved Tight Closure Algorithm for Integer Octagonal Constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 8–21. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Berge, C.: Graphs and Hypergraphs. Dunod, Paris (1973)zbMATHGoogle Scholar
  4. 4.
    Bonomo, F., Oriolo, G., Snels, C.: Minimum Weighted Clique Cover on Strip-Composed Perfect Graphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 22–33. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Chvátal, V.: On certain polytopes associated with graphs. J. Combin. Theory, Ser. B 18(2), 138–154 (1975)zbMATHCrossRefGoogle Scholar
  6. 6.
    Chvátal, V., Sbihi, N.: Recognizing claw-free perfect graphs. J. Combin. Theory, Ser. B 44, 154–176 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Edmonds, J., Johnson, E.: Matching: a well-solved class of integer linear programs. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 89–92. Gordon and Breach, New York (1970)Google Scholar
  8. 8.
    Edmonds, J., Johnson, E.: Matching, Euler tours and the Chinese postman. Math. Program. 5, 88–124 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading to an O(n 3)-algorithm for the weighted stable set problem. In: Randall, D. (ed.) Proc. 22nd SODA, San Francisco, CA, pp. 630–646 (2011)Google Scholar
  10. 10.
    Fulkerson, D.: On the perfect graph theorem. In: Hu, T., Robinson, S. (eds.) Mathematical Programming, pp. 69–76. Academic Press, New York (1973)Google Scholar
  11. 11.
    Gerards, A., Schrijver, A.: Matrices with the Edmonds-Johnson property. Combinatorica 6(4), 365–379 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)zbMATHCrossRefGoogle Scholar
  13. 13.
    Harvey, W., Stuckey, P.: A unit two variable per inequality integer constraint solver for constraint logic programming. In: The 20th Australasian Computer Science Conference, Sydney, Australia. Australian Computer Science Communications, pp. 102–111 (1997)Google Scholar
  14. 14.
    Hsu, W., Nemhauser, G.: Algorithms for minimum covering by cliques and maximum clique in claw-free perfect graphs. Discrete Math. 37, 181–191 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hsu, W., Nemhauser, G.: A polynomial algorithm for the minimum weighted clique cover problem on claw-free perfect graphs. Discrete Math. 38(1), 65–71 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Beyond Finite Domains. In: PPCP 1994. LNCS, vol. 874, pp. 86–94. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  17. 17.
    Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Berlin (2011)zbMATHGoogle Scholar
  18. 18.
    Lahiri, S.K., Musuvathi, M.: An Efficient Decision Procedure for UTVPI Constraints. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 168–183. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Maffray, F., Reed, B.: A description of claw-free perfect graphs. J. Combin. Theory, Ser. B 75(1), 134–156 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Padberg, M.: Perfect zero-one matrices. Math. Program. 6, 180–196 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Peis, B.: Structure Analysis of Some Generalizations of Matchings and Matroids under Algorithmic Aspects. PhD thesis, Universität zu Köln (2007)Google Scholar
  22. 22.
    Schrijver, A.: Disjoint homotopic paths and trees in a planar graph. Discrete Comput. Geom. 6(1), 527–574 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency (3 volumes). Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)zbMATHGoogle Scholar
  24. 24.
    Schutt, A., Stuckey, P.: Incremental satisfiability and implication for UTVPI constraints. INFORMS J. Comput. 22(4), 514–527 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Seshia, S., Subramani, K., Bryant, R.: On solving Boolean combinations of UTVPI constraints. J. Satisf. Boolean Model. Comput. 3, 67–90 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Whitesides, S.: A method for solving certain graph recognition and optimization problems, with applications to perfect graphs. In: Berge, C., Chvátal, V. (eds.) Topics on Perfect Graphs, North-Holland. North-Holland Mathematics Studies, vol. 88, pp. 281–297 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Flavia Bonomo
    • 1
  • Gianpaolo Oriolo
    • 2
  • Claudia Snels
    • 2
  • Gautier Stauffer
    • 3
  1. 1.IMAS-CONICET and Departamento de Computación, FCENUniversidad de Buenos AiresArgentina
  2. 2.Dipartimento di Ingegneria Civile e Ingegneria InformaticaUniversità Tor VergataRomaItaly
  3. 3.Bordeaux Institute of MathematicsFrance

Personalised recommendations