Retrieval of 4D Dual Energy CT for Pulmonary Embolism Diagnosis

  • Antonio Foncubierta–Rodríguez
  • Alejandro Vargas
  • Alexandra Platon
  • Pierre–Alexandre Poletti
  • Henning Müller
  • Adrien Depeursinge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7723)

Abstract

Pulmonary embolism is a common condition with high short–term morbidity. Pulmonary embolism can be treated successfully but diagnosis remains difficult due to the large variability of symptoms, which are often non–specific including breath shortness, chest pain and cough. Dual energy CT produces 4–dimensional data by acquiring variation of attenuation with respect to spatial coordinates and also with respect to the energy level. This additional information opens the possibility of discriminating tissue with specific material content, such as bone and adjacent contrast. Despite having already been available for clinical use for a while, there are few applications where Dual energy CT is currently showing a clear clinical advantage. In this article we propose to use the additional energy–level data in a 4D dataset to quantify texture changes in lung parenchyma as a way of finding parenchyma perfusion deficits characteristic of pulmonary embolism.

Keywords

4D texture pulmonary embolism dual energy CT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldhaber, S.Z., Visani, L., Rosa, M.D.: Acute pulmonary embolism: clinical outcomes in the international cooperative pulmonary embolism registry (icoper). The Lancet 353(9162), 1386–1389 (1999)CrossRefGoogle Scholar
  2. 2.
    Anderson, F.A.J., Wheeler, H.B., Goldberg, R.J., Hosmer, D.W., Patwardhan, N.A., Jovanovic, B., Forcier, A., Dalen, J.E.: A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism: The worcester dvt study. Archives of Internal Medicine 151(5), 933–938 (1991)CrossRefGoogle Scholar
  3. 3.
    Alonso-Martínez, J., Sánchez, F.A., Echezarreta, M.U.: Delay and misdiagnosis in sub-massive and non-massive acute pulmonary embolism. European Journal of Internal Medicine 21(4), 278–282 (2010)CrossRefGoogle Scholar
  4. 4.
    Ozsu, S., Oztuna, F., Bulbul, Y., Topbas, M., Ozlu, T., Kosucu, P., Ozsu, A.: The role of risk factors in delayed diagnosis of pulmonary embolism. The American Journal of Emergency Medicine 29(1), 26–32 (2011)CrossRefGoogle Scholar
  5. 5.
    Schwickert, H.C., Schweden, F., Schild, H.H., Piepenburg, R., Düber, C., Kauczor, H.U., Renner, C., Iversen, S., Thelen, M.: Pulmonary arteries and lung parenchyma in chronic pulmonary embolism: preoperative and postoperative CT findings. Radiology 191(2), 351–357 (1994)Google Scholar
  6. 6.
    Ganeshan, B., Miles, K.A., Young, R.C.D., Chatwin, C.R.: Three–dimensional selective–scale texture analysis of computed tomography pulmonary angiograms. Investigative Radiology 43(6), 382–394 (2008)CrossRefGoogle Scholar
  7. 7.
    Chae, E.J., Seo, J.B., Jang, Y.M., Krauß, B., Lee, C.W., Lee, H.J., Song, K.S.: Dual–energy CT for assessment of the severity of acute pulmonary embolism: Pulmonary perfusion defect score compared with CT angiographic obstruction score and right ventricular/left ventricular diameter ratio. American Journal of Roentgenology 194(3), 604–610 (2010)CrossRefGoogle Scholar
  8. 8.
    Lee, C., Seo, J., Song, J.W., Kim, M.Y., Lee, H., Park, Y., Chae, E., Jang, Y., Kim, N., Krauß, B.: Evaluation of computer–aided detection and dual energy software in detection of peripheral pulmonary embolism on dual-energy pulmonary CT angiography. European Radiology 21(1), 54–62 (2011)CrossRefGoogle Scholar
  9. 9.
    Nakazawa, T., Watanabe, Y., Hori, Y., Kiso, K., Higashi, M., Itoh, T., Naito, H.: Lung perfused blood volume images with dual–energy computed tomography for chronic thromboembolic pulmonary hypertension: Correlation to scintigraphy with single–photon emission computed tomography. Journal of Computer Assisted Tomography 35(5), 590–595 (2011)CrossRefGoogle Scholar
  10. 10.
    Thieme, S.F., Becker, C.R., Hacker, M., Nikolaou, K., Reiser, M.F., Johnson, T.R.C.: Dual energy CT for the assessment of lung perfusion—correlation to scintigraphy. European Journal of Radiology 68(3), 369–374 (2008)CrossRefGoogle Scholar
  11. 11.
    Thieme, S.F., Johnson, T.R.C., Lee, C., McWilliams, J., Becker, C.R., Reiser, M.F., Nikolaou, K.: Dual–energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. American Journal of Roentgenology 193(1), 144–149 (2009)CrossRefGoogle Scholar
  12. 12.
    Foncubierta-Rodríguez, A., Depeursinge, A., Müller, H.: Using Multiscale Visual Words for Lung Texture Classification and Retrieval. In: Müller, H., Greenspan, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 69–79. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Avni, U., Greenspan, H., Konen, E., Sharon, M., Goldberger, J.: X–ray categorization and retrieval on the organ and pathology level, using patch–based visual words. IEEE Transactions on Medical Imaging 30(3), 733–746 (2011)CrossRefGoogle Scholar
  14. 14.
    Qanadli, S.D., El Hajjam, M., Vieillard-Baron, A., Joseph, T., Mesurolle, B., Oliva, V.L., Barré, O., Bruckert, F., Dubourg, O., Lacombe, P.: New CT index to quantify arterial obstruction in pulmonary embolism. American Journal of Roentgenology 176(6), 1415–1420 (2001)Google Scholar
  15. 15.
    Nevel, A.V.: Texture classification using wavelet frame decompositions. In: Conference Record of the Thirty–First Asilomar Conference on Signals, Systems & Computers, vol. 1, pp. 311–314 (November 1997)Google Scholar
  16. 16.
    Smith, J.R., Lin, C.Y., Naphade, M.: Video texture indexing using spatio–temporal wavelets. In: Proceedings of the International Conference on Image Processing, vol. 2, pp. 437–440 (September 2002)Google Scholar
  17. 17.
    Chenouard, N., Unser, M.: 3D steerable wavelets and monogenic analysis for bioimaging. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 2132–2135 (April 2011)Google Scholar
  18. 18.
    Korfiatis, P., Skiadopoulos, S., Sakellaropoulos, P., Kalogeropoulou, C., Costaridou, L.: Automated 3D Segmentation of Lung Fields in Thin Slice CT Exploiting Wavelet Preprocessing. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 237–244. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Korfiatis, P., Kalogeropoulou, C., Karahaliou, A., Kazantzi, A., Skiadopoulos, S., Costaridou, L.: Texture classification–based segmentation of lung affected by interstitial pneumonia in high–resolution CT. Medical Physics 35(12), 5290–5302 (2008)CrossRefGoogle Scholar
  20. 20.
    Korfiatis, P.D., Kalogeropoulou, C., Karahaliou, A.N., Kazantzi, A.D., Costaridou, L.I.: Vessel tree segmentation in presence of interstitial lung disease in MDCT. IEEE Transactions on Information Technology in Biomedicine 15(2), 214–220 (2011)CrossRefGoogle Scholar
  21. 21.
    Kovalev, V.A., Kruggel, F.: Texture anisotropy of the brain’s white matter as revealed by anatomical MRI. IEEE Transactions on Medical Imaging 26(5), 678–685 (2007)CrossRefGoogle Scholar
  22. 22.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, ICCV 2003, vol. 2, pp. 1470–1477. IEEE Computer Society, Washington, DC (2003)CrossRefGoogle Scholar
  23. 23.
    van Rijsbergen, C.J.: Information Retrieval. Prentice Hall, Englewood Cliffs (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Antonio Foncubierta–Rodríguez
    • 1
  • Alejandro Vargas
    • 2
  • Alexandra Platon
    • 2
  • Pierre–Alexandre Poletti
    • 2
  • Henning Müller
    • 1
    • 2
  • Adrien Depeursinge
    • 1
    • 2
  1. 1.University of Applied Sciences Western Switzerland (HES–SO)Switzerland
  2. 2.University Hospitals of Geneva (HUG)Switzerland

Personalised recommendations