Superposition for Bounded Domains

  • Thomas Hillenbrand
  • Christoph Weidenbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7788)

Abstract

Reasoning about bounded domains in resolution calculi is often painful. For explicit and small domains and formulas with a few variables, grounding can be a successful approach. This approach was in particular shown to be effective by Bill McCune. For larger domains or larger formula sets with many variables, there is not much known. In particular, despite general decidability, superposition implementations that can meanwhile deal with large formula sets typically will not necessarily terminate. We start from the observation that lifting can be done more economically here: A variable does not stand anymore for every ground term, but just for the finitely many domain representatives. Thanks to this observation, the inference rules of superposition can drastically be restricted, and redundancy becomes effective. We present one calculus configuration which constitutes a decision procedure for satisfiability modulo the cardinality bound, and hence decides the Bernays-Schönfinkel class as a simple consequence. Finally, our approach also applies to bounded sorts in combination with arbitrary other, potentially infinite sorts in the framework of soft sorts. This frequent combination – which we recently explored in a combination of Spass and Isabelle – is an important motivation of our study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 84–99. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Armando, A., Ranise, S., Rusinowitch, M.: Uniform Derivation of Decision Procedures by Superposition. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 513–527. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Transactions on Computational Logic 10(1), 4:1–4:51 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-free clause logic. In: Ahrendt, W., Baumgartner, P., de Nivelle, H. (eds.) Proceedings of the Third Workshop on Disproving, pp. 82–99 (2006)Google Scholar
  7. 7.
    Baumgartner, P., Furbach, U., Pelzer, B.: The hyper tableaux calculus with equality and an application to finite model computation. Journal of Logic and Computation 20(1), 77–109 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Baumgartner, P., Schmidt, R.A.: Blocking and Other Enhancements for Bottom-Up Model Generation Methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 125–139. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Bernays, P., Schönfinkel, M.: Zum Entscheidungsproblem der mathematischen Logik. Mathematische Annalen 99, 342–372 (1928)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C.: More SPASS with Isabelle—Superposition with Hard Sorts and Configurable Simplification. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 345–360. Springer, Heidelberg (2012), http://www4.in.tum.de/~blanchet/more-spass.pdfCrossRefGoogle Scholar
  11. 11.
    Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability and Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 513–527. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Bonacina, M.P., Lynch, C., Mendonça de Moura, L.: On deciding satisfiability by theorem proving with speculative inferences. Journal of Automated Reasoning 47(2), 161–189 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the Workshop on Model Computation (2003)Google Scholar
  14. 14.
    de Nivelle, H., Meng, J.: Geometric Resolution: A Proof Procedure Based on Finite Model Search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 303–317. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Dershowitz, N.: A Maximal-Literal Unit Strategy for Horn Clauses. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 14–25. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  16. 16.
    Fietzke, A., Weidenbach, C.: Labelled splitting. Annals of Mathematics and Artificial Intellelligence 55(1-2), 3–34 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed automata. In: Ratschan, S. (ed.) MACIS 2011: Fourth International Conference on Mathematical Aspects of Computer and Information Sciences, pp. 52–62 (2011); Journal version to appear in the Journal of Mathematics in Computer ScienceGoogle Scholar
  18. 18.
    Fontaine, P., Merz, S., Weidenbach, C.: Combination of Disjoint Theories: Beyond Decidability. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 256–270. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Ganzinger, H., Meyer, C., Weidenbach, C.: Soft Typing for Ordered Resolution. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 321–335. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Hillenbrand, T., Topic, D., Weidenbach, C.: Sudokus as logical puzzles. In: Ahrendt, W., Baumgartner, P., de Nivelle, H. (eds.) Proceedings of the Third Workshop on Disproving, pp. 2–12 (2006)Google Scholar
  21. 21.
    Hillenbrand, T., Weidenbach, C.: Superposition for finite domains. Research Report MPI-I-2007-RG1-002, Max-Planck-Institut für Informatik, Saarbrücken (2007), http://www.mpi-inf.mpg.de/~hillen/documents/HW07.ps
  22. 22.
    Kamin, S., Levy, J.-J.: Attempts for generalizing the recursive path orderings. University of Illinois, Department of Computer Science. Unpublished note (1980), Available electronically from http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html
  23. 23.
    Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.-K.: On Superposition-Based Satisfiability Procedures and Their Combination. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 594–608. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Manthey, R., Bry, F.: Satchmo: A Theorem Prover Implemented in Prolog. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  25. 25.
    McCune, W.: Mace4 reference manual and guide. Technical Report ANL/MCS-TM-264, Argonne National Laboratory (2003)Google Scholar
  26. 26.
    McCune, W.: Prover9 and mace4 (2005-2010), http://www.cs.unm.edu/~ccune/prover9/
  27. 27.
    McCune, W.: Otter 3.3 reference manual. CoRR, cs.SC/0310056 (2003)Google Scholar
  28. 28.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Automatic Computation. Prentice-Hall (1967)Google Scholar
  29. 29.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 7, pp. 371–443. Elsevier (2001)Google Scholar
  30. 30.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM 53, 937–977 (2006)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on the Implementation of Logics (2010)Google Scholar
  32. 32.
    Navarro, J.A., Voronkov, A.: Proof Systems for Effectively Propositional Logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 426–440. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Schulz, S., Bonacina, M.P.: On Handling Distinct Objects in the Superposition Calculus. In: Konev, B., Schulz, S. (eds.) Proc. of the 5th International Workshop on the Implementation of Logics, Montevideo, Uruguay, pp. 66–77 (2005)Google Scholar
  34. 34.
    Slaney, J.: FINDER: Finite Domain Enumerator. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 798–801. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  35. 35.
    Suda, M., Weidenbach, C., Wischnewski, P.: On the Saturation of YAGO. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 441–456. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  36. 36.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, ch. 27, pp. 1965–2012. Elsevier (2001)Google Scholar
  37. 37.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS Version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  38. 38.
    Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  39. 39.
    Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 1, pp. 298–303. Morgan Kaufmann (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Hillenbrand
    • 1
  • Christoph Weidenbach
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations