Exploring Unknown Paths in Networks Based on Multiple Random Walks

  • Cunlai Pu
  • Jian Yang
  • Ruihua Miao
  • Wenjiang Pei
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7751)


We study the problem of exploring unknown paths in networks through multiple random walks. It is assumed that a path is explored if it has been passed through by a random walker from the initial node to the terminal node continuously. We derive probability θ (t) that a given path in a network is explored by one or more random walkers in t steps on condition that there are many random walkers traveling on the network. Results show that more random walkers are better for exploring the path. The larger length l of the path is, the smaller θ (t) is. To explore paths with the same length in three kinds of networks, random walkers need least effort in SWW networks, most effort in BA networks and moderate effort in ER networks.


random walks path networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barabási, A.L.: Scale-Free Networks: A Decade and Beyond. Science 325, 412–413 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Song, C.M., Qu, Z.H., Blumm, N., Barabási, A.L.: Limits of Predictability in Human Mobility. Science 327, 1018–1021 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Song, C.M., Havlin, S., Hernán, A.M.: Self-similarity of complex networks. Nature 433, 392–395 (2005)CrossRefGoogle Scholar
  5. 5.
    Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)CrossRefGoogle Scholar
  6. 6.
    Wang, D.S., Wen, Z., Tong, H.H., Lin, C.Y., Song, C.M., Barabási, A.L.: Information Spreading in Context. In: Proceeding for the 20th International World Wide Web Conference, pp. 1–10. ACM, Hyderabad (2011)Google Scholar
  7. 7.
    Wang, W.X., Yin, C.Y., Yan, G., Wang, B.H.: Integrating local static and dynamic information for routing traffic. Phys. Rev. E 74, 016101–016105 (2006)CrossRefGoogle Scholar
  8. 8.
    Yan, G., Zhou, T., Hu, B., Fu, Z.Q., Wang, B.H.: Efficient routing on complex networks. Phys. Rev. E 74, 046108–046112 (2006)CrossRefGoogle Scholar
  9. 9.
    Wu, Z.X., Wang, W.X., Yeung, K.H.: Traffic dynamics in scale-free networks with limited buffers and decongestion strategy. New J. Phys. 10, 023025 (2008)Google Scholar
  10. 10.
    Yang, R., Wang, W.X., Lai, Y.C., Chen, G.R.: Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. Phys. Rev. E 79, 026112–026117 (2009)Google Scholar
  11. 11.
    Lee, S., Yook, S.H., Kim, Y.: Diffusive capture process on complex networks. Phys. Rev. E 74, 046118–046124 (2006)Google Scholar
  12. 12.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)CrossRefGoogle Scholar
  13. 13.
    Zhou, T., Liu, J.G., Bai, W.J., Chen, G., Wang, B.H.: Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. Phys. Rev. E 74, 056109–056114 (2006)Google Scholar
  14. 14.
    Yang, R., Zhou, T., Xie, Y.B., Lai, Y.C., Wang, B.H.: Optimal contact process on complex networks. Phys. Rev. E 78, 066109–066113 (2008)Google Scholar
  15. 15.
    Yang, R., Huang, L., Lai, Y.C.: Selectivity-based spreading dynamics on complex networks. Phys. Rev. E 78, 026111–026115 (2008)Google Scholar
  16. 16.
    Weiss, G.H.: Aspects and Applications of the Random Walk. North-Holland, Amsterdam (1994)zbMATHGoogle Scholar
  17. 17.
    Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2004)Google Scholar
  18. 18.
    Noh, J.D., Rieger, H.: Random Walks on Complex Networks. Phys. Rev. Lett. 92, 118701–118704 (2004)Google Scholar
  19. 19.
    Zhang, Z.Z., Qi, Y., Zhou, S.G., Gao, S.Y., Guan, J.H.: Explicit determination of mean first-passage time for random walks on deterministic uniform recursive trees. Phys. Rev. E 81, 016114–016121 (2010)Google Scholar
  20. 20.
    Zhang, Z.Z., Wu, B., Zhang, H.J., Zhou, S.G., Guan, J.H., Wang, Z.G.: Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices. Phys. Rev. E 81, 031118–031124 (2010)Google Scholar
  21. 21.
    Wang, S.P., Pei, W.J.: Detecting unknown paths on complex networks through random walks. Physica A 388, 514–522 (2009)CrossRefGoogle Scholar
  22. 22.
    Almaas, E., Kulkarni, R.V., Stroud, D.: Scaling properties of random walks on small-world networks. Phys. Rev. E 68, 056105–056110 (2003)Google Scholar
  23. 23.
    Feige, U.: A Tight Lower Bound on the Cover Time for Random Walks on Graphs. Random Structures and Algorithms 6(4), 433–438 (1995)Google Scholar
  24. 24.
    Kahn, J.D., Linial, N., Nisan, N., Saks, M.E.: On the cover time of random walks on graphs. Journal of Theoretical Probability 2(1), 121–128 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Aldous, D.J.: Lower bounds for covering times for reversible Markov chains and random walks on graphs. Journal of Theoretical Probability 2(1), 91–100 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Dolev, S., Schiller, E., Welch, J.L.: Random Walk for Self-Stabilizing Group Communication in Ad Hoc Networks. IEEE Transactions on Mobile Computing 5(7), 893–905 (2006)CrossRefGoogle Scholar
  27. 27.
    Tian, H., Shen, H., Matsuzawa, R.: Maximizing Networking Lifetime in Wireless Sensor Networks with Regular Topologies. In: Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, Dalian, China, pp. 211–217 (2008)Google Scholar
  28. 28.
    Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  30. 30.
    Erdös, P., Rényi, A.: On random graphs. Publ. Math. 6, 290–297 (1959)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cunlai Pu
    • 1
  • Jian Yang
    • 1
  • Ruihua Miao
    • 2
  • Wenjiang Pei
    • 2
  1. 1.School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.School of Information Science and EngineeringSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations